• 제목/요약/키워드: vegetation change

검색결과 865건 처리시간 0.031초

복원사업 후 마을비보숲의 장기 식생 변화 - 완주군 두방 마을비보숲을 사례로 - (Long-term Vegetation Change of the Complementary Village Forest after Restoration Project - Centered on the Village Complementary Forest of Wanju Dubang Village -)

  • 박재철;두은
    • 농촌계획
    • /
    • 제25권3호
    • /
    • pp.129-139
    • /
    • 2019
  • The purpose of this study is to monitor the long-term vegetation change of the village complementary forest after restoration. Based on the monitoring in 2010, six years after the restoration project in 2004, the monitoring of the complementary forest in Dubang village in 2019 after 9 years was conducted. This study identifies the change of species diversity and structure, growth, vegetation coverage, structural quality etc. and succession through long-term monitoring. For this, field survey was conducted in 2003 and 2010, 2019. The results demonstrate significant increase of species diversity and multi-layer structure and progress of natural succession. Overall, Part I is considered to be a quasi-natural complementary village forest, which has a natural balance between natural vegetation that have remained in nature for a long time and anthropogenic vegetation, revealing the coexistence of nature and humanity. It means ecological structure and function have improved. Part II should be restored to the lost part and adaptive management rather than excessive management should be carried out to leave natural succession.

신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법 (Automatic Change Detection of MODIS NDVI using Artificial Neural Networks)

  • 정명희
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.83-89
    • /
    • 2012
  • 지구의 중요한 천연자원인 산림을 포함한 자연 식생환경은 지난 1세기 동안 많은 변화를 겪으며 기후에도 영향을 미치게 되어 현재 지구적 차원의 관심 속에서 다양한 연구가 진행되고 있다. 원격탐사는 분광적 특성을 이용하여 식생의 특성을 탐지할 수 있어 식생자원을 모니터링하는데 매우 효율적인 수단이다. 이러한 연구에서는 보통 원격탐사 측정을 분석하여 관찰된 화소가 식생을 포함하고 있는 정도를 나타내는 식생지수가 사용되고 있는데 NDVI가 이중 가장 많이 사용되는 식생지수이다. 본 논문에서는 MODIS NDVI 시계열 자료를 이용하여 자동으로 식생의 변화를 탐지해 가는 방법론이 제안되어 있다. 변화탐지를 위해 비모수 방법의 신경망 모형이 사용되었고 특성벡터로는 한 화소에서 다중 시기의 NDVI 차이와 더불어 NDVI 시계열 자료의 시간상의 관계가 함께 고려될수 있도록 제안되었다. 사용된 모형의 테스트를 위해 2006년부터 2011년까지 한반도 지역에 대한 MODIS MYD13Q1 자료가 사용되었다.

The Environmental Change of Korea based on the Isopollen Map during the Holocene

  • Yoon, Soon-Ock
    • 한국제4기학회지
    • /
    • 제22권2호
    • /
    • pp.6-11
    • /
    • 2008
  • Vegetation change reconstructed by pollen analysis is effective to clarify natural conditions such as climate and soil as well as intensity of human activity. Pollen analysis in Korea is difficult to obtain peaty soil sedimented by low relief geomorphollogically and formation age is usually confined to obtain information during young Holocene as well as little absolute age data. Isopollen map was constructed in order to analyze the change of vegetation environment time-spatially during Holocene based on the 30 data with age dated from 78 results from pollen analysis in Korea. The indicatives for vegetation environment were the main trees in Korea such as Alnus, Pinus, Quercus and AP/NAP during the periods of 6,000 y.BP, 4,000 y.BP, 3,000 y.BP, 2,000 y.BP, 1,000 y.BP. As a result, the regional time-spatial patterns of vegetation distribution appeared clearly on the isopollen map. The dominant vegetation stage was repeated in the different pattern e.g. the dominance between Alnus and Quercus at West Coast and between Pinus and Quercus at East Coast competitively.

  • PDF

산불지역에서 경관유형과 식생구조의 변화 (Changes of Landscape Pattern and Vegetation Structure in Rural Areal Area Disturbed by Fire)

  • 이창석;홍선기
    • The Korean Journal of Ecology
    • /
    • 제21권4호
    • /
    • pp.389-399
    • /
    • 1998
  • this study was focused on the effects of fire on spatial change of vegetation landscape in rural region. Fire types recognized as erown fire, severe surface fire and light surface fire in order of increasing intensity were described in a fire map. GIS was introduced to understand the relationship between fire types and topographic conditions or vegetation types. We also investigated land-use type and regeneration strategies after burning. Fire intensity depended on topographic conditions and vegetation types. Special land-use type in this area was collection of edible mushroom (Tricholoma matsutake). Mushrooms had been obtained from Pinus densiflora forests existing as edaphic climax or managed artificially. Regeneration strategy in burned areas was to make sprouts from burned oak stumps. A higher density and growth rate of sprouts, as compared to those on unburned areas, facilitated vegetation succession from P. densiflora forest to oak forest and consequently led to change of landscape pattern.

  • PDF

Landsat 영상을 이용한 식생의 변화 탐지- 대전광역시를 중심으로 - (Change Detection of Vegetation Using Landsat Image - Focused on Daejeon City -)

  • 박준규
    • 한국측량학회지
    • /
    • 제28권2호
    • /
    • pp.239-246
    • /
    • 2010
  • 위성영상을 이용하면 단시간에 매우 광범위한 지역의 데이터를 획득할 수 있으며, 여러 시간대의 영상으로부터 지형, 토지, 자연생태계, 도시화 등의 변화에 대한 자료를 확보할 수 있다. 본 연구에서는 시기가 다른 4개의 Landsat 위성영상을 이용하여 대전광역시의 식생에 대한 시계열적 변화를 탐지하였다. 또한 식생의 활력도를 파악하기 위하여 NDVI를 사용하였으며, 영상분류 결과와 NDVI로부터 연구대상지 식생의 시계열적 변화를 효과적으로 탐지할 수 있었다. 이는 도시의 효율적 관리 및 계획 수립과 관련된 의사결정에 활용될 것으로 기대된다.

The reserch evaluation of shadow influence in NOAA AVHRR data

  • Kim, Dong-Hee;Ryutaro, Tateishi;Choi, Seung-Pil
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 한국지형공간정보학회 2005년도 아시아 태평양 국제 GSIS 학술발표회
    • /
    • pp.101-106
    • /
    • 2005
  • Vegetation shows unique spectrum characteristics compared with other materials. If such characteristics are used, land change pattern can be determined. Thus, vegetation has an absorption belt and a reflective belt in visible and near infrared, and reflectance is very high. Then, various methods of monitoring vegetation paying attention to the absorption wavelength region and reflective region of vegetation are proposed. However, there are various problems in grasping change of vegetation by NDVI, PVI, etc. It is very difficult especially to remove various noise ingredients in the received satellite data. Until now, it is difficult to compensate for shadow effect when NDVI is used in vegetation analysis. The results is, if the shadow is about 60% the pixel will be wrongly classified as may be vegetation or not.

  • PDF

Wetness or Warmth, Which is the Dominant Factor for Vegetation?

  • Suzuki, Rikie;Xu, Jianqing;Motoya, Ken
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.147-149
    • /
    • 2003
  • The wetness, a function of precipitation and temperature etc, and the warmth, a function of temperature, are the dominant factor for global vegetation distribution. This paper employs the normalized difference vegetation index (NDVI), warmth index (WAI), and wetness index (WEI), and focuses on an essential climate-vegetation relationship at global scale. The NDVI was acquired from ‘Twenty-year global 4-minute AVHRR NDVI dataset.’ The WEI is defined as the fraction of the precipitation to the potential evaporation. The WAI was calculated by accumulating the monthly mean temperature of the portion exceeded 5$^{\circ}C$ throughout the year. Meteorological data for the WEI and WAI calculation were obtained from the ISLSCP CD-ROM. All analyses were conducted for 1 ${\times}$ 1 degree grid box on the terrestrial area of the Earth, and on annual value basis averaged in 1987 and 1988. The result of analyses demonstrated that there are two regimes in their relations, that is, a regime in which NDVIs vary depending on the WEI, and a regime in which NDVIs vary depending on the WAI. These two regimes appeared to correspond to the wetness dominant and warmth dominant vegetation, respectively. The geographical distributions of two regimes were mapped. Most of the world vegetation is categorized into wetness dominant, while warmth dominant vegetation is seen in the high-latitude area mainly to the north of 60$^{\circ}$N in the Northern Hemisphere and high-altitude areas.

  • PDF

제주도 내륙습지 미나리못의 식생 형성과 물환경과의 관계 (Formation of Vegetation in an Inland Wetland, Minarimot, of Jeju Islands, and its Relationship to Water Environment)

  • 김명현;한민수;방혜선;정명표;나영은
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.365-370
    • /
    • 2009
  • The aim of this study was to investigate the vegetation types of Minarimot, in Jeju Islands. The vegetation types were classified by the Z-M school method and cluster analysis. The vegetation in Minarimot was classified into 6 communities and 2 subcommunities: Persicaria thunbergii-Isachne globosa community (vegetation type: A), Scirpus tribangulatus-Eleocharis manillata var. cyclocarpa community (B) (Aneilema keisak subcommunity (B-1) and Caldesia parnassifolia-Potamogeton distinctus subcommunity (B-2)), Eleocharis kuroguwai community (C), Phragmites communis community (D), Scirpus tabernaemontani community(E) and Typha orientalis community (F). These communities were grouped into three main categories according to cluster analysis. The community (A) established at the edge of the wetland which has the driest condition was distinguished as Group I, while the community (B) emerged in the submerged zone was distinguished as Group III. The Group II was designated as the communities (C, D, E, F) between Group I and III, whose communities were occasionally submerged. The result of principal coordinate analysis (PCoA) appeared that the different vegetation established along the wetland were depending on water environment such as water depth and the period submerged.

지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구 (A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model)

  • 김재욱;이동근
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.

환경 조건 차이에 의한 경안천 토양의 유기물 분해속도와 온실가스 발생 변화 (Change of Organic Matter Decomposition Rates and Greenhouse Gas Emission of the Soil of Gyeongan Stream under Different Environmental Conditions)

  • 최인영;강민경;최정현
    • 생태와환경
    • /
    • 제46권1호
    • /
    • pp.75-85
    • /
    • 2013
  • 이 연구는 경안천 토양에서 기후 조건의 차이, 식물의 유무, 질소 농도의 차이에 따른 토양의 생물학적 유기물 분해속도의 변화가 대기 중 온실가스($CH_4$, $CO_2$) 발생에 미치는 영향을 알아보고자 하였다. 본 연구 결과, 유기물 분해속도와 $CH_4$, $CO_2$ flux 모두 환경 조건이 동시에 변화하는 경우에 영향을 받음을 알 수 있었다. 유기물 분해 속도는 기후 조건의 차이와 질소농도의 차이, 기후 조건 차이와 식물의 유무가 있는 경우에 영향을 받음을 알 수 있었다. $CH_4$ flux는 기후 조건 차이와 질소 농도의 차이, 기후 조건 차이와 식물의 유무, 식물의 유무와 질소 농도의 차이가 있는 경우에 영향이 있었으며 $CO_2$ flux는 기후 조건 차이와 식물의 유무, 식물의 유무와 질소 농도의 차이가 있는 경우에 영향이 있음을 통해 기후 조건 차이와 식물의 유무, 질소 농도의 차이가 유기물 분해속도에 영향을 주어 대기 중 온실가스 발생에 영향을 줄 수 있음을 알 수 있었다. 기후 조건 차이는 토양의 분해를 증진시켜 대기로 방출되는 온실가스 또한 가중시킬 수 있다고 알려져 있으나, 본 연구를 통해 기후변화가 유기물의 분해와 대기로의 온실가스 방출을 감소시킬 수 있다는 결과를 도출할 수 있었으며 기후 조건 차이 외의 질소가 유입될 경우, 순영향(positive effect)을 주게 됨을 알 수 있었다. 그러나 식물의 영향이 작용할 경우 질소의 유입으로 인한 순영향을 감소시킬 수 있음을 알 수 있었으며, 이에 따른 추가적인 연구가 필요할 것으로 판단된다.