• Title/Summary/Keyword: vegetable waste

Search Result 106, Processing Time 0.025 seconds

Polyhydroxyalkanoate (PHA) Production Using Waste Vegetable Oil by Pseudomonas sp. Strain DR2

  • Song, Jin-Hwan;Jeon, Che-Ok;Choi, Mun-Hwan;Yoon, Sung-Chul;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1408-1415
    • /
    • 2008
  • To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of $PHA_{MCL}$ from waste vegetable oil. The proportion of 3-hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.

Effects of Leachate during Vegetable Waste Composting using Rotary Drum Composter

  • Varma, V. Sudharsan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • In India, disposal of vegetable market waste along with municipal solid waste in landfills or dumpsites is creating much nuisance in terms of odor nuisance, leachate production, and greenhouse gas emission into the atmosphere. Therefore, vegetable waste with high biodegradable and nutrient content is composted in a 550-L batch scale rotary drum composter to study the degradation process and its compost properties for its potential reuse as high quality compost. A total 150 kg of working volume was fixed for composting studies with two different ratios, trial A (6:3:1) of C/N 24 and trial B (8:1:1) of C/N 30, respectively. A maximum of $63.5^{\circ}C$ and $61.2^{\circ}C$ was observed in trials A and B; an average of $55^{\circ}C$ for more than 5 days, which helped in the degradation of organic matter and reduction of total and fecal coliform. The temperature dropped suddenly after the thermophilic stage in trial B, and leachate was observed due to insufficient amount of bulking agent. Mesophilic bacteria dominated during the initial stages of composting, and reduced considerably during the thermophilic stage. During the thermophilic stage, the rise in spore-forming organisms, including spore-forming bacteria, fungi, actinomycetes and streptomycetes, increased and these were predominant until the end of the composting process. By examination, it was observed that moisture and leachate production had adverse effects on the compost parameters with higher loss of micronutrients and heavy metals.

Biodiesel Production from Waste Cooking Oil Using Alkali Catalyst and Immobilized Enzyme 1. Fatty Acid Composition (알칼리 촉매와 고정화 효소를 이용한 폐식용유로 부터 바이오 디젤 생산 1. 지방산 조성)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1247-1256
    • /
    • 2010
  • Since biodiesel as bioenergy is defined as ester compounds formed by esterification of animal/vegetable oils, in this study three vegetable cooking oils (market, waste and refined waste ones) were esterified by reactions of alkali catalyst and immobilized enzyme. The fatty acid composition of the formed ester compounds was analyzed to investigate the feasibility of biodiesel production. By lipolysis (i.e, hydrolysis of Triglyceride (TG)), all three vegetable oils used in this study were found to produce Diglyceride (DG), Monoglyceride (MD) and Fatty acid ethylester (FAEE). However, the amount of produced FAEE (which can be used as an energy source) was in the increasing order of market cooking oil, waste one and refined waste one. With NaOH catalyst, FAEE was produced about 24.92, 17.63 and 11.31 % for the respective oils while adding Lipozyme TL produced FAEE about 43.54, 38.16 and 24.47 %, respectively. This indicates that enzyme catalyst is more effective than alkali one for transesterification. In addition, it was found that the composition of fatty acids produced by hydrolysis of TG was unchanged with alkali and immobilized enzyme reactions. Thus it can be expected that stable conditions remain in the course of mixing with gasoline whose composition is similar to that of the fatty acids.

Compost Production using Vegetable Waste and Spent Oak Mushroom Substrate (SMS) (채소 부산물과 표고 수확후 배지를 활용한 퇴비 제조방법)

  • Kim, Eui-Yeong;Kook, Seung-Woo;Yuk, Hwa Jung;Yoon, Min Ho;Kim, Sung-Chul
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 2016
  • Spent mushroom substrate (SMS) has generally been used for the manufacture of animal feed and production of bio fuel. Limited research has been conducted in the utilization of SMS as a co-material for composting. Therefore, the main purpose of this study was to evaluate the feasibility of composting vegetable waste mixed with various ratios of SMS (30, 40, and 50%). The results showed that the C/N ratio decreased when both sawdust (from 22.0~28.8 to 17.7~20.4) and SMS (from 18.5~19.5 to 12.7~16.8) were applied for composing, owing to increased contents of nitrogen. A maturity test conducted using mechanical (Solvita) and germination tests revealed that both sawdust (92.0~101.9%) and SMS (87.8~89.2%) satisfied a criteria of maturity standard (70%). A correlation analysis between compost maturity and its chemical properties revealed that the C/N ratio and pH were the most dominant parameters for compost maturity. Overall, SMS could be utilized as a compost material and especially, vegetable waste mixed with SMS could provide sufficient nutrients for crop growth.

Esterification of the Soybean Oil and Waste Vegetable Oil by Solid Catalysts (고체 촉매를 이용한 대두유와 폐식용유의 에스테르화)

  • Sin, Yong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2004
  • Esterification of soybean oil with methanol was investigated. First of all, liquid-liquid equilibriums for systems of soybean oil and methanol were measured at temperatures ranging from 40 to 65$^{\circ}C$. Profiles of conversion of soybean oil with time were determined from the glycerine content in reaction mixtures for the different kinds of catalysts, such as NaOH, CaO, Ca(OH)$_2$, MgO, Mg(OH)$_2$, and Ba(OH)$_2$. The effects of dose of catalyst, cosolvent and reaction temperature on final conversion were examined. Esterification of waste vegetable oil with methanol was investigated and compared to the case of soybean oil. Solubility of methanol in soybean oil was substantially greater than that of soybean oil in methanol. When the esterification reaction of soybean oil was catalyzed by solid catalyst, final conversion was strongly dependent on the alkalinity of the solid catalyst, and increased with the alkalinity of the metal. Hydroxides from the alkali metals were more effective than oxides. When Ca(OH)$_2$ was used for the esterification catalyst, maximum value of final conversion was measured at dose of 4%. When CHCl$_3$ as a cosolvent, was added into the reaction mixture of soybean oil which catalyzed by Ba(OH)$_2$, maximum value of final conversion was appeared at dose of 3%. When waste vegetable oil was catalyzed by NaOH and solid catalysts, high final conversion, over 90%, and fast reaction rate were obtained.

A Study on the Scale-up of Highly Effective Copper Metal Recovery from Waste Jelly-filled Communication Cables (폐 젤리충진 통신케이블로부터 고순도 구리회수를 위한 대형화 방안 연구)

  • Cho, Sungsu;Lee, Sooyoung;Seo, Minhye;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.157-160
    • /
    • 2014
  • We examined and compared the feasibility of vegetable oils with synthetic thermal conductive oils to recover highly purified copper metal from waste jelly-filled communication cables. While polydimethylsiloxane shows relatively poor separation efficiency under entire operating conditions, dibenzyltoluene and waste vegetable oil show the high separation efficiency if the appropriate operating temperature and time were given. By running 50 kg-class equipment with waste vegetable oils, we obtained 100% copper metal recovery with 99.2% purity at $300^{\circ}C$ for 60 min.

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi

  • Seul-Gi Jeong;Ho Myeong Kim;Moeun Lee ;Jung Eun Yang;Hae Woong Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2023
  • Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, antiinflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.

Effects of fruit and vegetable waste addition on corn stalk silage quality

  • Li Li Wang;Yan Fen Li;Li Zhuang Wu;Young Sang Yu;Xaysana Panyavong;Jong Geun Kim
    • Animal Bioscience
    • /
    • v.37 no.9
    • /
    • pp.1595-1602
    • /
    • 2024
  • Objective: In this study, we explored the effect of fruit and vegetable waste addition on the quality of corn stalk silage. Methods: Corn stalks were ensiled 20 days after ear harvesting and mixed with fruit and vegetable waste (FVW) consisting of apple, orange, broccoli, and Chinese cabbage waste as 3% of fresh matter. Fruit waste consisted of solid residue obtained after juicing, and vegetable waste was collected from farms and cut into small pieces (2 to 3 cm). The materials were stored anaerobically in 20-L silo buckets and opened after 60 days of fermentation. Results: There were significant differences in dry matter (DM), acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrient (TDN), and relative feed value (RFV) levels in FVW derived from all tested raw materials (p<0.05). Corn stalk mixed with orange waste (CSOW) had the highest DM content (28.77%), lowest ADF and NDF content (47.78% and 26.62% of DM, respectively), and highest TDN and RFV content (69.21 and 133, respectively). After 60 days, there were significant differences in all chemical parameters examined (p<0.05). Corn stalk mixed with broccoli waste (CSBW) had the lowest DM loss (2.23%), and the CSOW group had the lowest NDF and ADF content and highest in vitro DM digestibility. CSBW had the lowest pH and ammonia nitrogen content, but the highest lactic acid/acetic acid ratio among the treatment groups. CSOW had the highest lactic acid content (2.27% of DM). The microbial contents of each group differed only in lactic acid bacteria counts before and after ensiling, showing a slight increase (p>0.05) and significant decreases in yeast and mold counts (p<0.05) after ensiling. Conclusion: These findings confirmed that mixing various FVW materials, particularly orange waste, with corn stalks improved the nutritional value of silage. Adding broccoli waste resulted in better fermentation quality than the addition of other FVW materials.

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.