DOI QR코드

DOI QR Code

Use of Vegetable Waste as a Culture Medium Ingredient Improves the Antimicrobial and Immunomodulatory Activities of Lactiplantibacillus plantarum WiKim0125 Isolated from Kimchi

  • Seul-Gi Jeong (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Ho Myeong Kim (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Moeun Lee (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Jung Eun Yang (Technology Innovation Research Division, World Institute of Kimchi) ;
  • Hae Woong Park (Technology Innovation Research Division, World Institute of Kimchi)
  • Received : 2022.10.27
  • Accepted : 2022.11.28
  • Published : 2023.01.28

Abstract

Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, antiinflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.

Keywords

Acknowledgement

This work was supported by a research grant (KE2202-1-2) from the World Institute of Kimchi, funded by the Ministry of Science and ICT, Republic of Korea, and by the Korea Health Technology R&D Project (HP20C0085) of the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea.

References

  1. Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, et al. 2021. Cabbage and fermented vegetables: from death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 76: 735-750. https://doi.org/10.1111/all.14549
  2. Fonseca SC, Rivas I, Romaguera D, Quijal M, Czarlewski W, Vidal A, et al. 2020. Association between consumption of fermented vegetables and COVID-19 mortality at a country level in Europe. MedRxiv.
  3. Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, et al. 2020. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin. Transl. Allergy 10: 58.
  4. Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol J-P, et al. 2021. Potential interplay between Nrf2, TRPA1, and TRPV1 in nutrients for the control of COVID-19. Int. Arch. Allergy Immunol. 182: 324-338. https://doi.org/10.1159/000514204
  5. Lee HA, Song YO, Jang MS, Han JS. 2014. Effect of baechu kimchi added Ecklonia cava extracts on high glucose-induced oxidative stress in human umbilical vein endothelial cells. Prev. Nutr. Food Sci. 19: 170-177. https://doi.org/10.3746/pnf.2014.19.3.170
  6. Park JA, Tirupathi Pichiah P, Yu JJ, Oh SH, Daily III J, Cha YS. 2012. Anti-obesity effect of kimchi fermented with Weissella koreensis OK 1-6 as starter in high-fat diet-induced obese C57 BL/6J mice. J. Appl. Microbiol. 113: 1507-1516. https://doi.org/10.1111/jam.12017
  7. Yu T, Park ES, Song GH, Zhao X, Yi RK, Park KY. 2021. Kimchi markedly induces apoptosis in HT-29 human colon carcinoma cells. J. Food Biochem. 45: e13532.
  8. Yun YR, Park SH, Kim IH. 2019. Antioxidant effect of kimchi supplemented with Jeju citrus concentrate and its antiobesity effect on 3T3-L1 adipocytes. Food Sci. Nutr. 7: 2740-2746. https://doi.org/10.1002/fsn3.1138
  9. Lee SJ, Jeon HS, Yoo JY, Kim JH. 2021. Some important metabolites produced by lactic acid bacteria originated from kimchi. Foods 10: 2148.
  10. Lu R, Shang M, Zhang YG, Jiao Y, Xia Y, Garrett S, et al. 2020. Lactic acid bacteria isolated from Korean kimchi activate the vitamin D receptor-autophagy signaling pathways. Inflamm. Bowel Dis. 26: 1199-1211. https://doi.org/10.1093/ibd/izaa049
  11. Park JE, Oh SH, Cha YS. 2020. Lactobacillus Brevis OPK-3 from kimchi prevents obesity and modulates the expression of adipogenic and pro-inflammatory genes in adipose tissue of diet-induced obese mice. Nutrients 12: 604.
  12. Doron S, Snydman DR. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60: S129-S134. https://doi.org/10.1093/cid/civ085
  13. Quin C, Estaki M, Vollman D, Barnett J, Gill S, Gibson D. 2018. Probiotic supplementation and associated infant gut microbiome and health: a cautionary retrospective clinical comparison. Sci. Rep. 8: 18283.
  14. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al. 2019. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 19: 114.
  15. de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. 2016. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci. Technol. 58: 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
  16. Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimaraes JT, Yilmaz N, et al. 2020. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 19: 3390-3415. https://doi.org/10.1111/1541-4337.12613
  17. Jo SG, Noh EJ, Lee JY, Kim G, Choi JH, Lee ME, et al. 2016. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice. J. Microbiol. 54: 503-509. https://doi.org/10.1007/s12275-016-6160-2
  18. Moon Y, Soh J, Yu J, Sohn H, Cha Y, Oh S. 2012. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK 1-6 isolated from Kimchi on differentiating adipocyte. J. Appl. Microbiol. 113: 652-658. https://doi.org/10.1111/j.1365-2672.2012.05348.x
  19. de Medeiros VPB, Pimentel TC, Varandas RCR, Dos Santos SA, de Souza Pedrosa GT, da Costa Sassi CF, et al. 2020. Exploiting the use of agro-industrial residues from fruit and vegetables as alternative microalgae culture medium. Food Res. Int. 137: 109722.
  20. dos Santos FP, de Magalhaes DCMM, Nascimento JdS, Ramos GLdPA. 2021. Use of products of vegetable origin and waste from hortofruticulture for alternative culture media. Food Sci. Technol. 42: e00621.
  21. Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Bernatoniene J, et al. 2019. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 99: 3992-4002. https://doi.org/10.1002/jsfa.9625
  22. Gullon B, Yanez R, Alonso JL, Parajo J. 2008. L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 99: 308-319. https://doi.org/10.1016/j.biortech.2006.12.018
  23. Mathias TRdS, Alexandre VMF, Cammarota MC, de Mello PPM, Servulo EFC. 2015. Characterization and determination of brewer's solid wastes composition. J. Inst. Brew. 121: 400-404. https://doi.org/10.1002/jib.229
  24. Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  25. Jawad AH, Alkarkhi AF, Jason OC, Easa AM, Norulaini NN. 2013. Production of the lactic acid from mango peel waste-factorial experiment. J. King Saud Univ. Sci. 25: 39-45. https://doi.org/10.1016/j.jksus.2012.04.001
  26. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M. 2006. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 97: 211-217. https://doi.org/10.1016/j.biortech.2005.02.025
  27. Brito T, Pereira A, Pastore G, Moreira R, Ferreira M, Fai A. 2020. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. LWT-Food Sci. Technol. 124: 109028.
  28. Kim HM, Choi IS, Lee S, Yang JE, Jeong SG, Park JH, et al. 2019. Biorefining process of carbohydrate feedstock (agricultural onion waste) to acetic acid. ACS Omega 4: 22438-22444. https://doi.org/10.1021/acsomega.9b03093
  29. Kim HM, Park JH, Choi IS, Wi SG, Ha S, Chun HH, et al. 2018. Effective approach to organic acid production from agricultural kimchi cabbage waste and its potential application. PLoS One 13: e0207801.
  30. Linares-Morales JR, Salmeron-Ochoa I, Rivera-Chavira BE, Gutierrez-Mendez N, Perez-Vega SB, Nevarez-Moorillon GV. 2022. Influence of culture media formulated with agroindustrial wastes on the antimicrobial activity of lactic acid bacteria. J. Microbiol. Biotechnol. 32: 64-71. https://doi.org/10.4014/jmb.2107.07030
  31. Leaes FL, Vanin NG, Sant'Anna V, Brandelli A. 2011. Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11. Food Bioproc. Tech. 4: 822-828. https://doi.org/10.1007/s11947-010-0410-9
  32. Murthy PS, Rai AK, Bhaskar N. 2014. Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. J. Food Sci. Technol. 51: 1884-1892. https://doi.org/10.1007/s13197-012-0730-z
  33. Sabo SS, Converti A, Ichiwaki S, Oliveira RP. 2019. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J. Dairy Sci. 102: 87-99. https://doi.org/10.3168/jds.2018-14881
  34. Wu TY, Tsai CC, Hwang YT, Chiu TH. 2012. Effect of antioxidant activity and functional properties of chingshey purple sweet potato fermented milk by Lactobacillus acidophilus, L. delbrueckii subsp. lactis, and L. gasseri strains. J. Food Sci. 77: M2-M8. https://doi.org/10.1111/j.1750-3841.2011.02507.x
  35. Yun YR, Lee M, Song JH, Choi EJ, Chang JY. 2022. Immunomodulatory effects of Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124 isolated from kimchi on lipopolysaccharide-induced RAW264.7 cells and dextran sulfate sodiuminduced colitis in mice. J. Funct. Foods 90: 104969.
  36. Song MW, Jang HJ, Kim KT, Paik HD. 2019. Probiotic and antioxidant properties of novel Lactobacillus brevis KCCM 12203P isolated from kimchi and evaluation of immune-stimulating activities of its heat-killed cells in RAW 264.7 cells. J. Microbiol. Biotechnol. 29: 1894-1903. https://doi.org/10.4014/jmb.1907.07081
  37. Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491.
  38. Zhu J, Yong W, Wu X, Yu Y, Liu C, Mao X, et al. 2008. Anti-inflammatory effect of resveratrol on TNF-α-induced MCP-1 expression in adipocytes. Biochem. Biophys. Res. Commun. 369: 471-477. https://doi.org/10.1016/j.bbrc.2008.02.034
  39. Jang SE, Hyam SR, Han MJ, Kim SY, Lee BG, Kim DH. 2013. Lactobacillus brevis G-101 ameliorates colitis in mice by inhibiting NF-κB, MAPK and AKT pathways and by polarizing M1 macrophages to M2-like macrophages. J. Appl. Microbiol. 115: 888-896. https://doi.org/10.1111/jam.12273
  40. Sohn H, Chang YH, Yune JH, Jeong CH, Shin DM, Kwon HC, et al. 2020. Probiotic properties of Lactiplantibacillus plantarum LB5 isolated from Kimchi based on nitrate reducing capability. Foods 9: 1777.
  41. Lee HA, Kim H, Lee KW, Park KY. 2016. Dead Lactobacillus plantarum stimulates and skews immune responses toward T helper 1 and 17 polarizations in RAW 264.7 cells and mouse splenocytes. J. Microbiol. Biotechnol. 26: 469-476. https://doi.org/10.4014/jmb.1511.11001
  42. Kwak JH, Kim Y, Ryu SI, Lee M, Lee H, Lim YP, et al. 2020. Anti-inflammatory effect from extracts of Red Chinese cabbage and Aronia in LPS-stimulated RAW 264.7 cells. Food Sci. Nutr. 8: 1898-1903.  https://doi.org/10.1002/fsn3.1472