• Title/Summary/Keyword: vector features

Search Result 998, Processing Time 0.024 seconds

Infrared Target Recognition using Heterogeneous Features with Multi-kernel Transfer Learning

  • Wang, Xin;Zhang, Xin;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3762-3781
    • /
    • 2020
  • Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.

Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet (의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1517-1524
    • /
    • 2011
  • In this paper, a new document summarization method, which uses the semantic features and the pseudo relevance feedback (PRF) by using WordNet, is introduced to extract meaningful sentences relevant to a user query. The proposed method can improve the quality of document summaries because the inherent semantic of the documents are well reflected by the semantic feature from NMF. In addition, it uses the PRF by the semantic features and WordNet to reduce the semantic gap between the high level user's requirement and the low level vector representation. The experimental results demonstrate that the proposed method achieves better performance that the other methods.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

A Study on Hierarchical Recognition Algorithm of Multinational Banknotes Using SIFT Features (SIFT특징치를 이용한 다국적 지폐의 계층적 인식 알고리즘에 관한 연구)

  • Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.685-692
    • /
    • 2016
  • In this paper, we not only take advantage of the SIFT features in banknote recognition, which has robustness to illumination changes, geometric rotation as well as scale changes, but also propose the hierarchical banknote recognition algorithm, which comprised of feature vector extraction from the frame grabbed image of the banknotes, and matching to the prepared data base of multinational banknotes by ANN algorithm. The images of banknote under the developed UV, IR and white illumination are used so as to extract the SIFT features peculiar to each banknotes. These SIFT features are used in recognition of the nationality as well as face value. We confirmed successful function of the proposed algorithm by applying the proposed algorithm to the banknotes of Korean and USD as well as EURO.

Real-Time Face Tracking System using Adaptive Face Detector and Kalman Filter (적응적 얼굴 검출기와 칼만 필터를 이용한 실시간 얼굴 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Shin, Bum-Joo
    • Journal of Information Technology Services
    • /
    • v.6 no.3
    • /
    • pp.241-249
    • /
    • 2007
  • This paper describes a real-time face tracking system using effective detector and Kalman filter. In the proposed system, an image is separated into a background and an object using a real-time updated face color for effective face detection. The face features are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. The moving face is traced with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. The proposed system sets up an initial skin color and updates a region of a skin color through a moving skin color in a real time. It is possible to remove a background which has a similar color with a skin through updating a skin color in a real time. Also, as reducing a potential-face region using a skin color, the performance is increased up to 50% when comparing to the case of extracting features from a whole region.

Quaternion Markov Splicing Detection for Color Images Based on Quaternion Discrete Cosine Transform

  • Wang, Jinwei;Liu, Renfeng;Wang, Hao;Wu, Bin;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2981-2996
    • /
    • 2020
  • With the increasing amount of splicing images, many detection schemes of splicing images are proposed. In this paper, a splicing detection scheme for color image based on the quaternion discrete cosine transform (QDCT) is proposed. Firstly, the proposed quaternion Markov features are extracted in QDCT domain. Secondly, the proposed quaternion Markov features consist of global and local quaternion Markov, which utilize both magnitude and three phases to extract Markov features by using two different ways. In total, 2916-D features are extracted. Finally, the support vector machine (SVM) is used to detect the splicing images. In our experiments, the accuracy of the proposed scheme reaches 99.16% and 97.52% in CASIA TIDE v1.0 and CASIA TIDE v2.0, respectively, which exceeds that of the existing schemes.

Gait Recognition Algorithm Based on Feature Fusion of GEI Dynamic Region and Gabor Wavelets

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.892-903
    • /
    • 2018
  • The paper proposes a novel gait recognition algorithm based on feature fusion of gait energy image (GEI) dynamic region and Gabor, which consists of four steps. First, the gait contour images are extracted through the object detection, binarization and morphological process. Secondly, features of GEI at different angles and Gabor features with multiple orientations are extracted from the dynamic part of GEI, respectively. Then averaging method is adopted to fuse features of GEI dynamic region with features of Gabor wavelets on feature layer and the feature space dimension is reduced by an improved Kernel Principal Component Analysis (KPCA). Finally, the vectors of feature fusion are input into the support vector machine (SVM) based on multi classification to realize the classification and recognition of gait. The primary contributions of the paper are: a novel gait recognition algorithm based on based on feature fusion of GEI and Gabor is proposed; an improved KPCA method is used to reduce the feature matrix dimension; a SVM is employed to identify the gait sequences. The experimental results suggest that the proposed algorithm yields over 90% of correct classification rate, which testify that the method can identify better different human gait and get better recognized effect than other existing algorithms.

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

Blind Quality Metric via Measurement of Contrast, Texture, and Colour in Night-Time Scenario

  • Xiao, Shuyan;Tao, Weige;Wang, Yu;Jiang, Ye;Qian, Minqian.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4043-4064
    • /
    • 2021
  • Night-time image quality evaluation is an urgent requirement in visual inspection. The lighting environment of night-time results in low brightness, low contrast, loss of detailed information, and colour dissonance of image, which remains a daunting task of delicately evaluating the image quality at night. A new blind quality assessment metric is presented for realistic night-time scenario through a comprehensive consideration of contrast, texture, and colour in this article. To be specific, image blocks' color-gray-difference (CGD) histogram that represents contrast features is computed at first. Next, texture features that are measured by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, the quality prediction model is conducted by the support vector regression (SVR) based on extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the compared BIQA metrics.

Automated detection of panic disorder based on multimodal physiological signals using machine learning

  • Eun Hye Jang;Kwan Woo Choi;Ah Young Kim;Han Young Yu;Hong Jin Jeon;Sangwon Byun
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • We tested the feasibility of automated discrimination of patients with panic disorder (PD) from healthy controls (HCs) based on multimodal physiological responses using machine learning. Electrocardiogram (ECG), electrodermal activity (EDA), respiration (RESP), and peripheral temperature (PT) of the participants were measured during three experimental phases: rest, stress, and recovery. Eleven physiological features were extracted from each phase and used as input data. Logistic regression (LoR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) algorithms were implemented with nested cross-validation. Linear regression analysis showed that ECG and PT features obtained in the stress and recovery phases were significant predictors of PD. We achieved the highest accuracy (75.61%) with MLP using all 33 features. With the exception of MLP, applying the significant predictors led to a higher accuracy than using 24 ECG features. These results suggest that combining multimodal physiological signals measured during various states of autonomic arousal has the potential to differentiate patients with PD from HCs.