• Title/Summary/Keyword: vector features

Search Result 998, Processing Time 0.021 seconds

Fast Stitching Algorithm by using Feature Tracking (특징점 추적을 통한 다수 영상의 고속 스티칭 기법)

  • Park, Siyoung;Kim, Jongho;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.728-737
    • /
    • 2015
  • Stitching algorithm obtain a descriptor of the feature points extracted from multiple images, and create a single image through the matching process between the each of the feature points. In this paper, a feature extraction and matching techniques for the creation of a high-speed panorama using video input is proposed. Features from Accelerated Segment Test(FAST) is used for the feature extraction at high speed. A new feature point matching process, different from the conventional method is proposed. In the matching process, by tracking region containing the feature point through the Mean shift vector required for matching is obtained. Obtained vector is used to match the extracted feature points. In order to remove the outlier, the RANdom Sample Consensus(RANSAC) method is used. By obtaining a homography transformation matrix of the two input images, a single panoramic image is generated. Through experimental results, we show that the proposed algorithm improve of speed panoramic image generation compared to than the existing method.

Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features (Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식)

  • Jang, Ick-Hoon;Lee, Woo-Shin;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we propose a texture feature-based language identification using Gabor feature and wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features. In the proposed method, Gabor and wavelet transforms are first applied to a test image. The wavelet subbands are next denoised by Donoho's soft-thresholding. The magnitude operator is then applied to the Gabor image and the BDIP and BVLC operators to the wavelet subbands. Moments for Gabor magnitude image and each subband of BDIP and BVLC are computed and fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for a document image DB.

Efficient Harmonic-CELP Based Low Bit Rate Speech Coder (효율적인 하모닉-CELP 구조를 갖는 저 전송률 음성 부호화기)

  • 최용수;김경민;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.35-47
    • /
    • 2001
  • This paper describes an efficient harmonic-CELP speech coder by taking advantages of harmonic and CELP coders into account. According to frame voicing decision, the proposed harmonic-CELP coder adopts the RP-VSELP coder as a fast CELP in case of an unvoiced frame, or an improved harmonic coder in case of a voiced frame. The proposed coder has main features as follows: simple pitch detection, fast harmonic estimation, variable dimension harmonic vector quantization, perceptual weighting reflecting frequency resolution, fast harmonic synthesis, naturalness control using band voicing, and multi-mode. These features make the proposed coder require very low complexity, compared with HVXC coder To demonstrate the performance of the proposed coder, a 2.4 kbps coder has been implemented and compared with reference coders. From results of informal listening tests, the proposed coder showed good quality while requiring low delay and complexity.

  • PDF

Representative Feature Extraction of Objects using VQ and Its Application to Content-based Image Retrieval (VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용 기반 영상 검색)

  • Jang, Dong-Sik;Jung, Seh-Hwan;Yoo, Hun-Woo;Sohn, Yong--Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.724-732
    • /
    • 2001
  • In this paper, a new method of feature extraction of major objects to represent an image using Vector Quantization(VQ) is proposed. The principal features of the image, which are used in a content-based image retrieval system, are color, texture, shape and spatial positions of objects. The representative color and texture features are extracted from the given image using VQ(Vector Quantization) clustering algorithm with a general feature extraction method of color and texture. Since these are used for content-based image retrieval and searched by objects, it is possible to search and retrieve some desirable images regardless of the position, rotation and size of objects. The experimental results show that the representative feature extraction time is much reduced by using VQ, and the highest retrieval rate is given as the weighted values of color and texture are set to 0.5 and 0.5, respectively, and the proposed method provides up to 90% precision and recall rate for 'person'query images.

  • PDF

APPLICATION OF SUPPORT VECTOR MACHINE TO THE PREDICTION OF GEO-EFFECTIVE HALO CMES

  • Choi, Seong-Hwan;Moon, Yong-Jae;Vien, Ngo Anh;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2012
  • In this study we apply Support Vector Machine (SVM) to the prediction of geo-effective halo coronal mass ejections (CMEs). The SVM, which is one of machine learning algorithms, is used for the purpose of classification and regression analysis. We use halo and partial halo CMEs from January 1996 to April 2010 in the SOHO/LASCO CME Catalog for training and prediction. And we also use their associated X-ray flare classes to identify front-side halo CMEs (stronger than B1 class), and the Dst index to determine geo-effective halo CMEs (stronger than -50 nT). The combinations of the speed and the angular width of CMEs, and their associated X-ray classes are used for input features of the SVM. We make an attempt to find the best model by using cross-validation which is processed by changing kernel functions of the SVM and their parameters. As a result we obtain statistical parameters for the best model by using the speed of CME and its associated X-ray flare class as input features of the SVM: Accuracy=0.66, PODy=0.76, PODn=0.49, FAR=0.72, Bias=1.06, CSI=0.59, TSS=0.25. The performance of the statistical parameters by applying the SVM is much better than those from the simple classifications based on constant classifiers.

Texture Classification Using Wavelet-Domain BDIP and BVLC Features With WPCA Classifier (웨이브렛 영역의 BDIP 및 BVLC 특징과 WPCA 분류기를 이용한 질감 분류)

  • Kim, Nam-Chul;Kim, Mi-Hye;So, Hyun-Joo;Jang, Ick-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.102-112
    • /
    • 2012
  • In this paper, we propose a texture classification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features with WPCA (whitened principal component analysis) classifier. In the proposed method, the wavelet transform is first applied to a query image. The BDIP and BVLC operators are next applied to the wavelet subbands. Global moments for each subband of BDIP and BVLC are then computed and fused into a feature vector. In classification, the WPCA classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the query feature vector. Experimental results show that the proposed method yields excellent texture classification with low feature dimension for test texture image DBs.

Mechanical Fault Classification of an Induction Motor using Texture Analysis (질감 분석을 이용한 유도 전동기의 기계적 결함 분류)

  • Jang, Won-Chul;Park, Yong-Hoon;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.11-19
    • /
    • 2013
  • This paper proposes an algorithm using vibration signals and texture analysis for mechanical fault diagnosis of an induction motor. We analyze characteristics of contrast and pattern of an image converted from vibration signal and extract three texture features using gray-level co-occurrence model(GLCM). Then, the extracted features are used as inputs of a multi-level support vector machine(MLSVM) which utilizes the radial basis function(RBF) kernel function to classify each fault type. In addition, we evaluate the classification performance with varying the parameter from 0.3 to 1.0 for the RBF kernel function of MLSVM, and the proposed algorithm achieved 100% classification accuracy with the parameter of the RBF from 0.3 to 1.0. Moreover, the proposed algorithm achieved about 98% classification accuracy with 15dB and 20dB noise inserted vibration signals.

Binary Visual Word Generation Techniques for A Fast Image Search (고속 이미지 검색을 위한 2진 시각 단어 생성 기법)

  • Lee, Suwon
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1313-1318
    • /
    • 2017
  • Aggregating local features in a single vector is a fundamental problem in an image search. In this process, the image search process can be speeded up if binary features which are extracted almost two order of magnitude faster than gradient-based features are utilized. However, in order to utilize the binary features in an image search, it is necessary to study the techniques for clustering binary features to generate binary visual words. This investigation is necessary because traditional clustering techniques for gradient-based features are not compatible with binary features. To this end, this paper studies the techniques for clustering binary features for the purpose of generating binary visual words. Through experiments, we analyze the trade-off between the accuracy and computational efficiency of an image search using binary features, and we then compare the proposed techniques. This research is expected to be applied to mobile applications, real-time applications, and web scale applications that require a fast image search.

Emotion Transition Model based Music Classification Scheme for Music Recommendation (음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법)

  • Han, Byeong-Jun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.

  • PDF

A Centroid-based Image Retrieval Scheme Using Centroid Situation Vector (Centroid 위치벡터를 이용한 영상 검색 기법)

  • 방상배;남재열;최재각
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.126-135
    • /
    • 2002
  • An image contains various features such as color, shape, texture and location information. When only one of those features is used to retrieve an image, it is difficult to acquire satisfactory retrieval efficiency. Especially, in the database with huge capacity, such phenomenon happens frequently. Therefore, by using moi·e features, efficiency of the contents-based image retrieval (CBIR) system can be improved. This paper proposes a technique to consider location information about specific color as well as color information in image using centroid situation vector. Centroid situation vectors are calculated for specific color of the query image. Then, location similarity is determined through comparing distances between extracted centroid situation vectors of query image and target image in the database. Simulation results show that the proposed method is robust in zoom-in or zoom-out processed images and improves discrimination ability in fliped or rotated images. In addition, the suggested method reduced computational complexity by overlapping information extraction, and that improved the retrieval speed using an efficient index file.