• Title/Summary/Keyword: vector data

Search Result 3,324, Processing Time 0.028 seconds

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

The Determination Factor's Variation of Real Estate Price after Financial Crisis in Korea (2008년 금융위기 이후 부동산가격 결정요인 변화 분석)

  • Kim, Yong-Soon;Kwon, Chi-Hung;Lee, Kyung-Ae;Lee, Hyun-Rim
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.367-377
    • /
    • 2011
  • This paper investigates the determination factors' variation of real estate price after sub-prime financial crisis, in korea, using a VAR model. The model includes land price, housing price, housing rent (Jensei) price, which time period is from 2000:1Q to 2011:2Q and uses interest rate, real GDP, consumer price index, KOSPI, the number of housing construction, the amount of land sales and practices to impulse response and variance decomposition analysis. Data cover two sub-periods and divided by 2008:3Q that occurred the sub-prime crisis; one is a period of 2000:1Q to 2008:3Q, the other is based a period of 2000:1Q to 2011:2Q. As a result, Comparing sub-prime crisis before and after, land price come out that the influence of real GDP is expanding, but current interest rate's variation is weaken due to the stagnation of current economic status and housing construction market. Housing price is few influenced to interest rate and real GDP, but it is influenced its own variation or Jensei price's variation. According to the Jensei price's rapidly increasing in nowadays, housing price might be increasing a rising possibility. Jensei price is also weaken the influence of all economic index, housing price, comparing before sub-prime financial crisis and it is influenced its own variation the same housing price. As you know, real estate price is weakened market basic value factors such as, interest rate, real GDP, because it is influenced exogenous economic factors such as population structural changes. Economic participators, economic officials, consumer, construction supplyers need to access an accurate observation about current real estate market and economic status.

A Development of Automatic Lineament Extraction Algorithm from Landsat TM images for Geological Applications (지질학적 활용을 위한 Landsat TM 자료의 자동화된 선구조 추출 알고리즘의 개발)

  • 원중선;김상완;민경덕;이영훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.175-195
    • /
    • 1998
  • Automatic lineament extraction algorithms had been developed by various researches for geological purpose using remotely sensed data. However, most of them are designed for a certain topographic model, for instance rugged mountainous region or flat basin. Most of common topographic characteristic in Korea is a mountainous region along with alluvial plain, and consequently it is difficult to apply previous algorithms directly to this area. A new algorithm of automatic lineament extraction from remotely sensed images is developed in this study specifically for geological applications. An algorithm, named as DSTA(Dynamic Segment Tracing Algorithm), is developed to produce binary image composed of linear component and non-linear component. The proposed algorithm effectively reduces the look direction bias associated with sun's azimuth angle and the noise in the low contrast region by utilizing a dynamic sub window. This algorithm can successfully accomodate lineaments in the alluvial plain as well as mountainous region. Two additional algorithms for estimating the individual lineament vector, named as ALEHHT(Automatic Lineament Extraction by Hierarchical Hough Transform) and ALEGHT(Automatic Lineament Extraction by Generalized Hough Transform) which are merging operation steps through the Hierarchical Hough transform and Generalized Hough transform respectively, are also developed to generate geological lineaments. The merging operation proposed in this study is consisted of three parameters: the angle between two lines($\delta$$\beta$), the perpendicular distance($(d_ij)$), and the distance between midpoints of lines(dn). The test result of the developed algorithm using Landsat TM image demonstrates that lineaments in alluvial plain as well as in rugged mountain is extremely well extracted. Even the lineaments parallel to sun's azimuth angle are also well detected by this approach. Further study is, however, required to accommodate the effect of quantization interval(droh) parameter in ALEGHT for optimization.

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

Automatic Speech Style Recognition Through Sentence Sequencing for Speaker Recognition in Bilateral Dialogue Situations (양자 간 대화 상황에서의 화자인식을 위한 문장 시퀀싱 방법을 통한 자동 말투 인식)

  • Kang, Garam;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.17-32
    • /
    • 2021
  • Speaker recognition is generally divided into speaker identification and speaker verification. Speaker recognition plays an important function in the automatic voice system, and the importance of speaker recognition technology is becoming more prominent as the recent development of portable devices, voice technology, and audio content fields continue to expand. Previous speaker recognition studies have been conducted with the goal of automatically determining who the speaker is based on voice files and improving accuracy. Speech is an important sociolinguistic subject, and it contains very useful information that reveals the speaker's attitude, conversation intention, and personality, and this can be an important clue to speaker recognition. The final ending used in the speaker's speech determines the type of sentence or has functions and information such as the speaker's intention, psychological attitude, or relationship to the listener. The use of the terminating ending has various probabilities depending on the characteristics of the speaker, so the type and distribution of the terminating ending of a specific unidentified speaker will be helpful in recognizing the speaker. However, there have been few studies that considered speech in the existing text-based speaker recognition, and if speech information is added to the speech signal-based speaker recognition technique, the accuracy of speaker recognition can be further improved. Hence, the purpose of this paper is to propose a novel method using speech style expressed as a sentence-final ending to improve the accuracy of Korean speaker recognition. To this end, a method called sentence sequencing that generates vector values by using the type and frequency of the sentence-final ending appearing in the utterance of a specific person is proposed. To evaluate the performance of the proposed method, learning and performance evaluation were conducted with a actual drama script. The method proposed in this study can be used as a means to improve the performance of Korean speech recognition service.

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

A Study on the Effects of Export Insurance on the Exports of SMEs and Conglomerates (수출보험이 국내 중소기업 및 대기업의 수출에 미치는 영향에 관한 연구)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.42 no.2
    • /
    • pp.145-174
    • /
    • 2017
  • Recently, due to the worsening global economic recession, Korea which is a small, export-oriented economy has decreased exports and the domestic economy also continues to stagnate. Therefore, for continued growth of our economy through export growth, we need to analyze the validity of export support system such as export insurance and prepare ways to expand exports. This study is to investigate the effects of Export Insurance on the exports of SMEs as well as LEs. For this purpose, this study conducted Time Series Analysis using data such as export, export insurance acquisition, export price index, exchange rate, and coincident composite index(CCI). First, as a result of the Granger Causality Test, the exports of LEs has found to have a causal relationship with the CCI, and CCI is to have a causal relationship with the short-term export insurance record. Second, the results of VAR analysis show that the export insurance acquisition result and the export price index have a positive effect on the exports of LEs, while the short - term export insurance has a negative effect on the exports of LEs. Third, as a result of variance decomposition, the export of LEs has much more influenced for mid to long term by the short-term export insurance acquisition compared to SMEs. Fourth, short-term export insurance has a positive effect on exports of SMEs. In order to activate short-term export insurance against SMEs, it is necessary to expand support for SMEs by local governments. This study aims to suggest policy implications for establishing effective export insurance policy by analyzing the effects of export insurance on the export of SMEs as well as LEs. It is necessary to carry out a time series analysis on the export results according to the insurance acquisition results by industry to measure the export support effect of export insurance more precisely.

  • PDF

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.