• Title/Summary/Keyword: vasoconstriction

Search Result 133, Processing Time 0.024 seconds

Effect of adenotonsillar hypertrophy on right ventricle function in children

  • Lee, Jin Hwan;Yoon, Jung Min;Lim, Jae Woo;Ko, Kyung Og;Choi, Seong Jun;Kim, Jong-Yeup;Cheon, Eun Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.11
    • /
    • pp.484-488
    • /
    • 2014
  • Purpose: Chronic upper airway obstruction causes hypoxemic pulmonary vasoconstriction, which may lead to right ventricle (RV) dysfunction. Adenotonsillar hypertrophy (ATH) is the most common cause of upper airway obstruction in children. Therefore, we aimed to evaluate RV function in children with ATH. Methods: Twenty-one children (male/female, 15/6; mean age, $92.3{\pm}39.0$ months; age range, 4-15 years) with ATH and 21 healthy age- and gender-matched controls were included in this study. Tricuspid annular plane systolic excursion and RV myocardial performance index were measured by transthoracic echocardiography. Further, the plasma level of N-terminal of probrain natriuretic peptide (NT-proBNP), an indicator of RV function, was determined. Results: The snoring-tiredness during daytime-observed apnea-high blood pressure (STOP) questionnaire was completed by the patients' parents, and loud snoring was noted in the ATH group. The plasma NT-proBNP level was significantly higher in the ATH group than that in the controls ($66.44{\pm}37.63pg/mL$ vs. $27.85{\pm}8.89pg/mL$, P=0.001). The echocardiographic parameters were not significantly different between the groups. Conclusion: We were unable to confirm the significance of echocardiographic evidence of RV dysfunction in the management of children with ATH. However, the plasma NT-proBNP level was significantly higher in the ATH group than that in the control, suggesting that chronic airway obstruction in children may carry a risk for cardiac dysfunction. Therefore, more patients should be examined using transthoracic echocardiography. In addition, pediatricians and otolaryngologists should consider cardiologic aspects during the management of children with severe ATH.

Endothelium Independent Effect of Pelargonidin on Vasoconstriction in Rat Aorta

  • Min, Young Sil;Yoon, Hyuk-Jun;Je, Hyun Dong;Lee, Jong Hyuk;Yoo, Seong Su;Shim, Hyun Sub;Lee, Hak Yeong;La, Hyen-Oh;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.26 no.4
    • /
    • pp.374-379
    • /
    • 2018
  • In this study, we investigated the effects of pelargonidin, an anthocyanidin found in many fruits and vegetables, on endothelium-independent vascular contractility to determine the underlying mechanism of relaxation. Isometric contractions of denuded aortic muscles from male rats were recorded, and the data were combined with those obtained in western blot analysis. Pelargonidin significantly inhibited fluoride-, thromboxane A2-, and phorbol ester-induced vascular contractions, regardless of the presence or absence of endothelium, suggesting a direct effect of the compound on vascular smooth muscles via a different pathway. Pelargonidin significantly inhibited the fluoride-dependent increase in the level of myosin phosphatase target subunit 1 (MYPT1) phosphorylation at Thr-855 and the phorbol 12,13-dibutyrate-dependent increase in the level of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation at Thr202/Tyr204, suggesting the inhibition of Rho-kinase and mitogen-activated protein kinase kinase (MEK) activities and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxation effect of pelargonidin on agonist-dependent vascular contractions includes inhibition of Rho-kinase and MEK activities, independent of the endothelial function.

Effects of Protein Kinase C Modulation on Hepatic Hemodynamics and Glucoregulation

  • Lee, Joong-Woo;Kong, In-Deok;Park, Kyu-Sang;Chung, Hae-Sook;Filkins, James P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.571-578
    • /
    • 1999
  • This study evaluated the effects of PKC activation using phorbol 12-myristate 13-acetate (PMA) and PKC inhibition using the isoquinoline sulfomide derivative H-7 on hemodynamics and glucoregulation in the isolated perfused rat liver. Livers were isolated from fed male Holtzman rats and perfused with Krebs Ringer bicarbonate solution under a constant flow of 50 ml/min at $35^{\circ}C.$ Portal vein pressure, glucose and lactate concentrations in the medium and oxygen consumption rates were continuously monitored by a Grass polygraph, YSI glucose and lactate monitors, and a YSI oxygen monitor, respectively. PMA at concentration of 2 to 200 nM increased the portal vein pressure, glucose and lactate production, but decreased oxygen consumption rate in a dose-dependent fashion. H-7 $(200\;{\mu}M)$ attenuated PMA (50 nM)-induced vasoconstriction $(15.1{\pm}1.36\;vs\;10.56{\pm}1.17\;mmHg),$ glucose production rate $(91.3{\pm}6.15\;vs\;71.8{\pm}2.50\;{\mu}moles/g/hr),$ lactate production rate $(72.4{\pm}6.82\;vs\;53.6{\pm}4.82\;{\mu}moles/g/hr)$ and oxygen consumption rate $(33.7{\pm}1.41\;vs\;27.9{\pm}1.75\;{\mu}l/g/min).$ The effects of PMA were blocked either by addition of verapamil $(9\;{\mu}M)$ or perfusion with $Ca^{2+}-free$ KRB. These results suggest that the hemodynamic and glucoregulatory changes in the perfused rat liver are mediated by protein kinase C activation and require $Ca^{2+}$ influx from the extracellular fluid.

  • PDF

Effects of warmed carrier fluid on nefopam injection-induced pain

  • Cho, Hyung Rae;Kim, Seon Hwan;Kim, Jin A;Min, Jin Hye;Lee, Yong Kyung
    • The Korean Journal of Pain
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2018
  • Background: Nefopam is a non-opioid, non-steroidal analgesic drug with fewer adverse effects than narcotic analgesics and nonsteroidal anti-inflammatory drugs, and is widely used for postoperative pain control. Because nefopam sometimes causes side effects such as nausea, vomiting, somnolence, hyperhidrosis and injection-related pain, manufacturers are advised to infuse it slowly, over a duration of 15 minutes. Nevertheless, pain at the injection site is very common. Therefore, we investigated the effect of warmed carrier fluid on nefopam injection-induced pain. Methods: A total of 48 patients were randomly selected and allocated to either a control or a warming group. Warming was performed by diluting 40 mg of nefopam in 100 ml of normal saline heated to $31-32^{\circ}C$ using two fluid warmers. The control group was administered 40 mg of nefopam dissolved in 100 ml of normal saline stored at room temperature ($21-22^{\circ}C$) through the fluid warmers, but the fluid warmers were not activated. Results: The pain intensity was lower in the warming group than in the control group (P < 0.001). The pain severity and tolerance measurements also showed statistically significant differences between groups (P < 0.001). In the analysis of vital signs before and after the injection, the mean blood pressure after the injection differed significantly between the groups (P = 0.005), but the heart rate did not. The incidence of hypertension also showed a significant difference between groups (P = 0.017). Conclusions: Use of warmed carrier fluid for nefopam injection decreased injection-induced pain compared to mildly cool carrier fluid.

Change in Pulpal Blood Flow of Heat-induced Neurogenic Inflammation in Feline Dental Plup (고양이 치수에서 열 자극으로 유도된 신경병증 염증에서 치수 혈류량 변화)

  • Park, Min-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6340-6345
    • /
    • 2013
  • This study examined the involvement of histamine in heat-induced changes in pulpal blood flow(PBF) to determine the mechanism of neurogenic inflammation in feline dental pulp. The experiments were carried out in 10 felines anesthetized with sodium pentobartial and histamine injected into the dental pulp through the external carotid artery. The change in the pulpal PBF was measured using a laser Doppler flowmeter(Periflux 4001, Stockholm, Sweden). The probe of laser Doppler flowmeter was placed on the buccal surface of the ipsilateral canine teeth. Heat was applied to the tooth using a heat stimulator controlled script file with an input/output device. The application of heat ($40-65^{\circ}C$) induced a significant increase in PBF. The application of histamine($5{\mu}g/kg/1ml$) followed by heat($45^{\circ}C$) resulted in an increase in PBF. Therefore, the results of the present study showed that heat and histamine are capable of vasoconstriction caused by neurogenic inflammation in feline dental pulp. In addition, neurogenic inflammation plays an active role in modulating the microcirculation of the dental pulp.

Development of an Ex Vivo Model for the Study of Cerebrovascular Function Utilizing Isolated Mouse Olfactory Artery

  • Lee, Hyung-Jin;Dietrich, Hans H.;Han, Byung Hee;Zipfel, Gregory J.
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Objective : Cerebral vessels, such as intracerebral perforating arterioles isolated from rat brain, have been widely used as an ex vivo model to study the cerebrovascular function associated with cerebrovascular disorders and the therapeutic effects of various pharmacological agents. These perforating arterioles, however, have demonstrated differences in the vascular architecture and reactivity compared with a larger leptomeningeal artery which has been commonly implicated in cerebrovascular disease. In this study, therefore, we developed the method for studying cerebrovascular function utilizing the olfactory artery isolated from the mouse brain. Methods : The olfactory artery (OA) was isolated from the C57/BL6 wild-type mouse brain. After removing connective tissues, one side of the isolated vessel segment (approximately $-500{\mu}m$ in length) was cannulated and the opposite end of the vessel was completely sealed while being viewed with an inverted microscope. After verifying the absence of pressure leakage, we examined the vascular reactivity to various vasoactive agents under the fixed intravascular pressure (60 mm Hg). Results : We found that the isolated mouse OAs were able to constrict in response to vasoconstrictors, including KCl, phenylephrine, endothelin-1, and prostaglandin $PGH_2$. Moreover, this isolated vessel demonstrated vasodilation in a dose-dependent manner when vasodilatory agents, acetylcholine and bradykinin, were applied. Conclusion : Our findings suggest that the isolated olfactory artery would provide as a useful ex vivo model to study the molecular and cellular mechanisms of vascular function underlying cerebrovascular disorders and the direct effects of such disease-modifying pathways on cerebrovascular function utilizing pharmacological agents and genetically modified mouse models.

The Effect of Angelicae gigantis radix according to Heat-process on Anti-Oxidant and Anti-Thrombotic (초법에 따른 당귀의 항산화 및 항혈전 효과)

  • Kim, Min Yeong;Kown, O Jun;Choo, Byung Kil;Lee, Chia Wei;Park, Eun Hey;Kim, Hong Jun
    • The Korea Journal of Herbology
    • /
    • v.31 no.3
    • /
    • pp.13-22
    • /
    • 2016
  • Objectives: Arachidonic acid is control the thromboxane A2 (TXA2) and prostacycline (PGI2) synthesis, TXA2 increase lead to thrombus produced by induces platelet aggregation and vasoconstriction. Angelicae gigantis radix (RAR) is mainly used blood deficiency and stagnation. In previous studies, RAR has been reported that a vasodilating and blood clotting delay effects. In this study, investigate that anti-oxidant and anti-thrombotic effects of RAR by heat-process.Methods: The heated angelicae gigantis radix sample were made by 140, 180, and 220 ℃ and 4, 6, 9 and 12 min using water or 30% ethanol. The anti-oxidant effects were measured by total polyphenol, total flavonoid, DPPH and ABTS radical scavening activation. Anti-thrombotic effect conducted in samples that are determined to be effective through the anti-oxidant experiment such as angelicae gigantis radix roasted 180℃, and 220℃ and angelicae gigantis radix roasted with 30% ethanol 180℃, and 220℃.Results: Anti-oxidant parameters were efficacious in high temperature roasted AR. Also AR and EAR increased a inhibitory activity of FXa compared with RAR. The blood coagulation time of administration groups were significantly increased compare with control group. The TXB2 was significantly decreased in AR and EAR.Conclusions : We confirmed that whether AR and EAR administration has anti-oxidant and anti-thrombotic effect or not. As the results, AR and EAR were improved anti-oxidant effects and blood biochemistry compare with control group. This study provides scientific evidence that AR and EAR are have an anti-oxidant effect and anti-thrombotic effect, it expected that there is no difference between the two.

Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel

  • Park, Jung-Min;Chang, Kyung-Hwa;Park, Kwang-Hoon;Choi, Seong-Jin;Lee, Kyuhong;Lee, Jin-Yong;Satoh, Masahiko;Song, Seong-Yu;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2016
  • The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of $25{\sim}100{\mu}g/mL$, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at $50{\sim}100{\mu}g/mL$ and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at $10{\sim}100{\mu}g/mL$, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution.

Algorithm for reduction of motion artifact generated in SpO2 measurement (산소포화도(SpO2) 측정시에 발생되는 motion artifact를 reduction하는 algorithm)

  • 한승헌;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.860-863
    • /
    • 2003
  • Pulse oximetry has gained wide spread clinical acceptance in the latter part of the 21st century. The principle of pulse oximetry is based on the red and infrared light absorption features and uses a light emitter with red and infrared LEDs that shines through a reasonably translucent site with good blood flow. There are two methods of sending light through the measuring site : transmission and reflectance. After the transmitted red and infrared signals pass through the measuring site and received at the photodetector, the red/infrared ratio is calculated. But, pulse of oximeters are so sensitive that they may detect pulses when pressure is too low to provide adequate tissue blood flow, that is, SpO2 may decrease due to O2 consumption by the finger of the pulsing but stagnant arterial blood at low pressure or with vasoconstriction. This project has the limitations of pulse oximetry. Therefore, this paper is focused on the resuction of motion artifact that caused by moving when someone measures with SpO2 system.

  • PDF

NITRIC OXIDE AND DENTAL PULP (NITRIC OXIDE와 치수)

  • Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.