• 제목/요약/키워드: vascular tone

검색결과 74건 처리시간 0.025초

Decreased Voltage Dependent $K^+$ Currents in Cerebral Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rat

  • Oh, Young-Sun;Kim, Se-Hoon;Kim, Hoe-Suk;Jeon, Byeong-Hwa;Chang, Seok-Jong;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권5호
    • /
    • pp.471-479
    • /
    • 1999
  • The Kv channel activity in vascular smooth muscle cell plays an important role in the regulation of membrane potential and blood vessel tone. It was postulated that increased blood vessel tone in hypertension was associated with alteration of Kv channel and membrane potential. Therefore, using whole cell mode of patch-clamp technique, the membrane potential and the 4-AP-sensitive Kv current in cerebral arterial smooth muscle cells were compared between normotensive rat and one-kidney, one-clip Goldblatt hypertensive rat (lK,lC-GBH rat). Cell capacitance of hypertensive rat was similar to that of normotensive rat. Cell capacitance of normotensive rat and 1K,lC-GBH rat were $20.8{\pm}2.3$ and $19.5{\pm}1.4$ pF, respectively. The resting membrane potentials measured in current clamp mode from normotensive rat and 1K,lC-GBH rat were $-45.9{\pm}1.7$ and $-38.5{\pm}1.6$ mV, respectively. 4-AP (5 mM) caused the resting membrane potential hypopolarize but charybdotoxin $(0.1\;{\mu}M)$ did not cause any change of membrane potential. Component of 4-AP-sensitive Kv current was smaller in 1K,lC-GBH rat than in normotensive rat. The voltage dependence of steady-state activation and inactivation of Kv channel determined by using double-pulse protocol showed no significant difference. These results suggest that 4-AP-sensitive Kv channels playa major role in the regulation of membrane potential in cerebral arterial smooth muscle cells and alterations of 4-AP-sensitive Kv channels would contribute to hypopolarization of membrane potential in 1K,lC-GBH rat.

  • PDF

EFFECT OF GINSENG SAPONIN ON THE VASCULAR SMOOTH MUSCLE

  • Lee Kwang Soo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.71-76
    • /
    • 1980
  • Aortic strips were prepared from rabbits, and the tensions were maintained by administration of norepinephrine into the incubation chamber. The application of diol or triol induced relaxation of the aortic strip, as indicated by the decreased aortic tension. Triol, in a concentration of $30\;mg\%\;causes\;approximately\;50\%$ of muscle relaxation, whereas a similar degree of relaxation is induced by $50\;mg\%$ of diol. This indicates that both triol and diol cause relaxation of the aorta, but that triol is about $170\%$ more potent than diol. It is well established that blood-vessel smooth-muscle tone is regulated by the available intracellular $Ca^{++}$ concentration, which in turn is profoundly influenced by interaction of the cellular membrane and sarcoplasmic reticulum in the smooth muscle. Thus, any agent which modifies the smooth-muscle tone is expected to interfere with the $Ca^{++}$ binding or uptake of sarcolemma and sarcoplasmic reticulum. In the following experiments sarcoplasmic reticulum and sarcolemma were prepared from the ventricle of rabbit heart, and the active $Ca^{++}$ uptake by these cellular components was measured employing $Ca^{45}$ in the presence of triol and diol. It was found that the active $Ca^{++}$ uptake in the presence of ATP by sarcoplasmic reticulum was inhibited by both triol and diol. Panaxatriol, in a concentration of $80\;mg\;\%,$ inhibited $Ca^{++}$ uptake by $30\%,$ whereas panaxatriol in the same concentration inhibited uptake by $20\%.$ It is clear that triol is a more potent inhibitor of active $Ca^{++}$ transport in sarcoplasmic reticulum than diol. The $Ca^{++}$ binding of the cellular membrane was also studied employing Ca45 and milipore techniques. It was found that triol in a concentration of $80\;mg\;\%,$ decreased $Ca^{++}$ binding by $29\%.$ Diol in the same concentration decreased the binding by $17\%.$ It is clear that both triol and diol inhibit $Ca^{++}$ binding to the cellular membrane, but triol is approximately $180\%$ more potent than diol.

  • PDF

토끼 흉부 대동맥 절편의 전기자극에 대한 수축 및 이완반응 (Electrical Stimulation Causes Endothelium-Dependent Relaxation in Isolated Aortic Vessels of the Rabbit)

  • 이석기;최형호;이종운
    • Journal of Chest Surgery
    • /
    • 제28권8호
    • /
    • pp.742-746
    • /
    • 1995
  • The present study was aimed at investigating possible transmitter mechanisms in the endothelial cell layer in regulating the tone of the vascular smooth muscle. The thoracic aorta was isolated from the anesthetized male white rabbits and its helical strips were prepared. Electrical field stimulation was delivered to platinum wire electrodes positioned parallel to the vessel segment preconstricted with phenylephrine [3.5x10-6 mol/L at a distance of 1.5-2.0 mm. The electrical stimulation [70 V, 5 msec, 0.5-200 Hz caused either relaxation only [34% or a biphasic response [prolonged relaxation following a weak and transient contraction, 66% . The relaxation response was frequency- dependent, and at 200 Hz a complete relaxation was noted. Mechanical rubbing of the endothelial layer abolished or greatly attenuated the relaxation. The relaxation was also markedly attenuated in the presence of NG-nitro- L-arginine methyl ester [10-3mol/L or procaine hydrochloride [3.5x10-4mol/L . Tetrodotoxin,guanethidine, atropine or indomethacin failed to block or enhance the relaxation response to electrical field stimulation. It is concluded that the vascular endothelium in the aorta contains diffusible substances that regulates the function of the smooth muscle layer, in which relaxation is more prominent than contraction. Their release by the electrical stimualtion in vitro may not involve classic neuronal transmitter release mechanisms or metabolism of arachidonic acids by cyclooxygenase. The release of the relaxing agents may require an increase in cytosolic calcium level. The chemical nature of the relaxant may be, to a large extent, nitric oxide.

  • PDF

Effects of Endothelin A Receptor Antagonist BQ123 on Femoral Artery Pressure and Pulmonary Artery Pressure in Broiler Chickens

  • Wang, Huiyu;Qiao, Jian;Gao, Mingyu;Yang, Ying;Li, Kai;Wang, Jianlin;Tian, Yong;Xu, Tong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1503-1509
    • /
    • 2007
  • Endothelin-1 (ET-1) is an important factor in regulation of cardiovascular tone in humans and mammals, but the biological function of ET-1 in the avian vascular system has not been determined. The purpose of this study was to characterize the role of endogenous ET-1 in the vascular system of poultry by investigating the effect of endothelin A receptor ($ET_AR$) antagonist BQ123 on the femoral artery pressure (FAP) and the pulmonary artery pressure (PAP) in broiler chickens. First, we found that plasma and lung homogenate ET-1 levels were both increased with age over the seven weeks life cyccle of broiler chickens. Second, 60 min after intravenous injection, BQ123 ($0.4{\mu}g\;kg^{-1}$ and $2.0{\mu}g\;kg^{-1}$, respectively) induced a significant reduction in FAP and PAP (p<0.05). Third, chronic infusion of BQ123 ($2.0{\mu}g\;kg^{-1}$ each time, two times a day) into abdominal cavities led to significant decrease in systolic pressure of the femoral (p<0.05) and pulmonary arteries (p<0.01) in broiler chickens at 7 and 14 days after treatment. Taken together, the $ET_AR$ antagonist BQ123 lead to a significant reduction of FAP and PAP, which suggests that endogenous ET-1 may be involved in the maintenance and regulation of systemic and pulmonary pressure in broiler chickens.

Alteration of 4-Aminopyridine-Sensitive, Voltage-Dependent $K^+-Channel$ in Arterial Smooth Muscle Cells of One-Kidney, One-Clip Goldblatt Hypertensive Rats

  • Kim, Hoe-Suk;Kim, Se-Hoon;Jeon, Byeong-Hwa;Chang, Seok-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.385-391
    • /
    • 2000
  • Using the patch-clamp technique, we investigated the alteration of 4-aminopyridine(4-AP)-sensitive, voltage-dependent $K^+$ channel (Kv) in the mesenteric arterial smooth muscle cell (MASMC) of renovascular hypertensive model, one-kidney one-clip Goldblatt hypertensive rat (GBH). To isolate $K_V$ current, internal pipette solution contained 5 mM ATP and 10 mM EGTA. Under these condition, MASMC was depolarized by 4-AP, but charybdotoxin did not affect membrane potential. Membrane potential of hypertensive cell $(-40.3{\pm}3.2\;mV)$ was reduced when compared to that of normotensive cell $(-59.5{\pm}2.8\;mV).$ Outward $K^+$ current of hypertensive cell was significantly reduced when compared to normotensive cell. At 60 mV, the outward currents were $19.10{\pm}1.91$ and $14.06{\pm}1.05$ pA/pF in normotensive cell and hypertensive cell respectively. 4-AP-sensitive $K^+$ current was also smaller in hypertensive cell $(4.28{\pm}0.38\;pA/pF)$ than in normotensive cell $(7.65{\pm}0.52\;pA/pF).$ The values of half activation voltage $(V_{1/2})$ and slope factor (k1) as well as the values of half inactivation voltage $(V_{1/2})$ and slope factor (k1) were virtually similar between GBH and NTR. These results suggest that the decrease of 4-AP-sensitive $K^+$ current contributes to a depolarization of membrane potential, which leads to development of vascular tone in GBH.

  • PDF

Suppression of Peripheral Sympathetic Activity Underlies Protease-Activated Receptor 2-Mediated Hypotension

  • Kim, Young-Hwan;Ahn, Duck-Sun;Joeng, Ji-Hyun;Chung, Seungsoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.489-495
    • /
    • 2014
  • Protease-activated receptor (PAR)-2 is expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although some reports have suggested involvement of a neurogenic mechanism in PAR-2-induced hypotension, the accurate mechanism remains to be elucidated. To examine this possibility, we investigated the effect of PAR-2 activation on smooth muscle contraction evoked by electrical field stimulation (EFS) in the superior mesenteric artery. In the present study, PAR-2 agonists suppressed neurogenic contractions evoked by EFS in endothelium-denuded superior mesenteric arterial strips but did not affect contraction elicited by the external application of noradrenaline (NA). However, thrombin, a potent PAR-1 agonist, had no effect on EFS-evoked contraction. Additionally, ${\omega}$-conotoxin GVIA (CgTx), a selective N-type $Ca^{2+}$ channel ($I_{Ca-N}$) blocker, significantly inhibited EFS-evoked contraction, and this blockade almost completely occluded the suppression of EFS-evoked contraction by PAR-2 agonists. Finally, PAR-2 agonists suppressed the EFS-evoked overflow of NA in endothelium-denuded rat superior mesenteric arterial strips and this suppression was nearly completely occluded by ${\omega}$-CgTx. These results suggest that activation of PAR-2 may suppress peripheral sympathetic outflow by modulating activity of $I_{Ca-N}$ which are located in peripheral sympathetic nerve terminals, which results in PAR-2-induced hypotension.

Effect of pH on Calcium-Activated Potassium Channels in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제25권1호
    • /
    • pp.17-26
    • /
    • 1991
  • Single smooth muscle cells of the rabbit pulmonary artery were isolated by treatment with collagenase and elastase. Using the patch clamp technique, potassium channel activity was recorded from the inside-out membrane patch. The channel had a sin히e channel conductance of about 360 pS in symmetrical concentration of K on both sides of the patch, 150 mM, and had a linear current-voltage relationship. During the application of 10 mM tetraethylammonium (TEA) to the intracellular membrane surface, the amplitude of single channel current was reduced and very rapid flickering appeared. The open probability $(P_0)$ of this channel was increased by increasing positivity of the potential across the patch membrane, with e-fold increase by 20 mV depolarization, and by increasing the internal $Ca^{2+}$ concentration. These findings are consistent with those of large conductance Ca-activated K channels reported in other tissues. But the shortening of the mean open time by increasing $[Ca^{2+}]_i$, was an unexpected result and one additional closed state which might be arisen from a block of the open channel by Ca binding was suggested. The $P_0-membrane$ potential relationship was modulated by internal pH. Decreasing pH reduced $P_0$. Increasing pH not only increased $P_0$ but also weakened the voltage dependency of the channel opening. The modulation of Ca-activated K channel by pH was thought to be related to the mechanism of regulation of vascular tone by the pH change.

  • PDF

한냉자극(寒冷刺戟)에 대한 한국해녀의 혈관계 반응(血管系反應)에 관한 연구 (Studies on Vascular Responses to Cold Stimuli in the Korean Diving Women)

  • 백광세;김진경;한대석;강복순;홍석기
    • The Korean Journal of Physiology
    • /
    • 제3권1호
    • /
    • pp.59-66
    • /
    • 1969
  • Experiments on thermoregulatory responses to cold immersion stimulus were carried out in September, 1968 (summer studies) and February, 1969 (winter studies). Eight each of ama and control subject were selected at random from a same community in Yong-Do Island, Pusan. The results obtained are summarized as follows: 1) The rate of fall in muscle temperature of forearm during a 30 min-immersion in $6^{\circ}C$ water bath was significantly slower in the ama in winter and was about the same in the two groups in summer. However, the magnitude of change in the skin temperature and the heat fluxes observed during immersion period was not significantly different either between groups or between seasons. 2) Both finger blood flow and skin temperature during one hr-immersion in $6^{\circ}C$ water bath decreased significantly in the ama as compared to the control. The magnitude of cold-induced vasodilatation during immersion period was significantly greater in the control in winter. However, the time of onset and blood flow at onset showed no significant relation between groups. 3) The magnitude of reactive hyperemia after a 5 min-arterial occlusion in both air and $15^{\circ}C$ water bath was significantly lower in the ana than in the control. In control subjects, post-occluded blood flow in water was significantly greater than in air, while in the ama it decreased to 1/2 of control values. The time required for the return of blood flow to resting values in the air was faster in the ama than in the control but was the same in water in the two groups. 4) The results suggest that vasoconstrictor tone increased in the ama in winter, indicating the development of vascular adaptation as a part of cold acclimatization.

  • PDF

성향정기산(星香正氣散)이 가토(家?)의 경동맥(頸動脈) 평활근(平滑筋) 긴장도(緊張度) 조절(調節)에 미치는 영향(影響) (Effects of Sunghyangchungisan on contractile Reactivity of Isolated Rabbit Carotid Artery)

  • 김영균;고우신;김종훈
    • 대한한의학회지
    • /
    • 제19권2호
    • /
    • pp.228-243
    • /
    • 1998
  • This study was undertaken to evaluate the effect of Sunghyangchungisan (SHCS) on the regulation of vascular tone. Vascular rings isolated from rabbit carotid artery were myographed isometrically in isolated organ baths and the effect of SHCS on contractile activities were determined. SHCS relaxed the arterial rings which were pre-contracted by phenylephrine(PE). The responses to SHCS were partially dose-dependent at concentrations lower than 0.5 mg/ml. When SHCS was applied prior to the exposure to PE, it inhibited the PE-induced contraction by a similar magnitude which was comparable to the relaxation of pre-contracted arterial rings. Washout of SHCS after observing its relaxant effect resulted in a full recovery of PE-induced contractions, indicating that the action mechanism is reversible. The observation that SHCS did not change the $ED_{50}$ of PE on its dose-response curve ruled out the possible interaction of SHCS and ${\alpha}-receptor$. The relaxant effect of SHCS was not affected by removal of endothelium, and pretreatment of the arterial rings with methylene blue or nitro-L-arginine. This results suggest that the action of SHCS is not mediated by endothelium nor soluble guanylate cyclase. SHCS relaxed high $K^{+}-induced$ contractions as well, whereas it failed to relax phorbol ester-induced contractions. When contraction was induced by additive application of $Ca^{2+}$ in arterial rings which were pre-depolarized by high $K^+$ in a $Ca^{2+}-free$ solution, the relaxant effect of SHCS was attenuated by increasing the $Ca^{2+}$ concentration. SHCS, when applied to the arterial rings pre-contracted by PE and then relaxed by nifedipine, a $Ca^{2+}$ channel blocker, did not show additive relaxation. From above results, it is suggested that SHCS relax PE-induced contraction of rabbit carotid artery in an endothelium-independent manner, and inhibition of $Ca^{2+}$ influx may contribute to the underling mechanism.

  • PDF

Effect of Cyclic Nucleotides on Phorbol Ester-Induced Contraction in Rabbit Carotid Artery

  • Jung, Dong-Keun;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.39-50
    • /
    • 1995
  • This study was designed to clarify the action of cyclic nucleotides, cyclic AMP and cyclic GMP, on phorbol 12,13-dibutyrate (PDBu)-induced contraction in rings isolated from rabbit carotid artery. Arterial rings, 2 mm in width, were myographied isometrically in an isolated organ bath. PDBu produced slowly developing, sustained contraction in rabbit carotid artery, in a dose dependent manner, which was independent of extracellular $Ca^{2+}$ PDBu-induced contraction was relaxed by staurosporine, which suggests that PDBu-induced contraction is mediated by protein kinase C (PKC). $^{45}Ca^{2+}$ uptake by rabbit carotid artery was increased by PDBu during depolarization, but not in control. Isoproterenol and sodium nitroprusside (SNP) relaxed phenylephrine-induced contraction. However, SNP but not isoproterenol relaxed the contraction induced by PDBu. Acetylcholine relaxed PDBu-induced contraction in the presence of the endothelium. 8-bromo-cyclic AMP, a permeable analogue of cyclic AMP, suppressed phenylephrine-induced contraction but not PDBu-induced contraction. 8-bromo cyclic GMP relaxed both of them with dose dependency. A large dose of forskolin relaxed PDBu-induced contraction. PDBu increased cyclic AMP without considerable change in the level of cyclic GMP. Based on these findings, PDBu-induced contraction of rabbit carotid artery was relaxed by cyclic GMP more effectively than cyclic AMP, and the action of cyclic AMP could be mediated by cyclic GMP dependent protein kinase. Therefore it is suggested that the antagonistic action between protein kinase C and cyclic GMP-dependent protein kinase plays a major role in the regulation of vascular tone.

  • PDF