• Title/Summary/Keyword: varying thickness

Search Result 761, Processing Time 0.029 seconds

Assessment of buccal bone thickness of aesthetic maxillary region: a cone-beam computed tomography study

  • Fuentes, Ramon;Flores, Tania;Navarro, Pablo;Salamanca, Carlos;Beltran, Victor;Borie, Eduardo
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • Purpose: The aim of this study was to analyze the anatomical dimensions of the buccal bone walls of the aesthetic maxillary region for immediate implant placement, based upon cone-beam computed tomography (CBCT) scans in a sample of adult patients. Methods: Two calibrated examiners analyzed a sample of 50 CBCT scans, performing morphometric analyses of both incisors and canines on the left and right sides. Subsequently, in the sagittal view, a line was traced through the major axis of the selected tooth. Then, a second line (E) was traced from the buccal to the palatal wall at the level of the observed bone ridges. The heights of the buccal and palatal bone ridges were determined at the major axis of the tooth. The buccal bone thickness was measured across five lines. The first was at the level of line E. The second was at the most apical point of the tooth, and the other three lines were equidistant between the apical and the cervical lines, and parallel to them. Statistical analysis was performed with a significance level of $P{\leq}0.05$ for the bone thickness means and standard deviations per tooth and patient for the five lines at varying depths. Results: The means of the buccal wall thicknesses in the central incisors, lateral incisors and canines were $1.14{\pm}0.65mm$, $0.95{\pm}0.67mm$ and $1.15{\pm}0.68mm$, respectively. Additionally, only on the left side were significant differences in some measurements of buccal bone thickness observed according to age and gender. However, age and gender did not show significant differences in heights between the palatal and buccal plates. In a few cases, the buccal wall had a greater height than the palatal wall. Conclusions: Less than 10% of sites showed more than a 2-mm thickness of the buccal bone wall, with the exception of the central incisor region, wherein 14.4% of cases were ${\geq}2mm$.

Consolidation Characteristics & Consolidation Period of Dredged Soil by Considering Change of Strain and Stratum Thickness (변형률과 층 두께의 변화를 고려한 준설점토의 압밀특성과 압밀기간)

  • Cheong Gyu-Hyang;Kim Young-Nam;Ju Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.105-114
    • /
    • 2004
  • Consolidation characteristics have been investigated by using Rowe cell consolidation tester for dredged soil, which is more than two times as much as the liquid limit. To examine the effects of variation of water content on consolidation characteristic, tests were carried out varying the initial water content from $100\%\;to\;150\%.$ The results were compared with the consolidation characteristics of remolded clay. The test results showed that the hither the initial water content of dredged clay was, the more noticeable the non-linear behavior of e-log P curves occurred. The variation of the gradient was apparent to load stage 40kPa and became less apparent after load stage 80kPa on the e-log P curves. Ratio of compression index stayed within the range suggested by Mesri and variation of initial water content has hardly influenced the coefficient of consolidation. On the contrary, it was found that the magnitude of consolidation load affects the vertical coefficient of consolidation. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and the results were compared with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

Feasibility of Fabricating Variable Density Phantoms Using 3D Printing for Quality Assurance (QA) in Radiotherapy

  • Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.106-110
    • /
    • 2017
  • The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

Experimental Study on Simplex Swirl Injector Dynamics with Varying Geometry

  • Chung, Yun-Jae;Khil, Tae-Ock;Yoon, Jung-Soo;Yoon, Young-Bin;Bazarov, V.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The effects of swirl chamber's diameter and length on injector's dynamic characteristics were investigated through an experimental study. A mechanical pulsator was installed in front of the manifold of a swirl injector which produces pressure oscillations in the feed line. Pressure in the manifold, liquid film thickness in the orifice and the pressure in the orifice were measured in order to understand the dynamic characteristic of the simplex swirl injector with varying geometry. A direct pressure measuring method (DPMM) was used to calculate the axial velocity of the propellant in the orifice and the mass flow rate through the orifice. These measured and calculated values were analyzed to observe the amplitude and phase differences between the input value in the manifold and the output values in the orifice. As a result, a phase-amplitude diagram was obtained which exhibits the injector's response to certain pressure fluctuation inputs. The mass flow rate was calculated by the DPMM and measured directly through the actual injection. The effect of mean manifold pressure change was insignificant with the frequency range of manifold pressure oscillation used in this experiment. Mass flow rate was measured with the variation of injector's geometries and amplitude of the mass flow rate was observed with geometry and pulsation frequency variation. It was confirmed that the swirl chamber diameter and length affect an injector's dynamic characteristics. Furthermore, the direction of geometry change for achieving dynamic stability in the injector was suggested.

Clonal Propagation in Commiphora Wightii (Arnott.) Bhandari

  • Mishra, Dhruv Kumar;Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.218-225
    • /
    • 2014
  • Studies were carried out to standardize and develop a suitable macro-propagation technology for large scale production of superior clonal stock through stem cuttings in Commiphora wightii Arnott (Bhandari), a data deficient medicinal plant of arid region. For the purpose, three experiments were conducted. The first experiment was tried to elucidate the impact of various cutting diameters (0.50-0.75 cm, 0.75-1.00 cm, 1.00-1.50 cm, and >1.50 cm) in combination with varying growing conditions (sunlight, shade house and mist chamber) on shoot sprouting and rooting without using exogenous plant growth regulators. Cutting diameter (size 0.75-1.00 cm) in mist chamber has shown maximum sprouting (90.00%) and rooting (73.33%), primary root (6.67) and secondary root (16.67) followed by 1.00-1.51 cm in mist chamber. Minimum sprouting (40.00%), rooting (33.33%), number of shoot (1.33), primary root (1.00) and number of secondary root (1.00) was recorded in cutting diameter (size >1.50 cm) in sunlight. Second experiment was performed to find out optimum growth regulator concentration of rooting hormone (100, 200, 500 and 1000 ppm) of Indole-3-acetic acid (IAA) and Indole-3-butyric Acid (IBA) on adventitious root formation on cuttings diameter (size 0.25-0.50 cm) in comparison to control. Maximum rooting percentage (93.33%) was recorded in 200 ppm followed by 500 ppm (86.66%) of IBA as compared to control, which showed only 60 per cent sprouting. Third experiment was performed with newly formed juvenile micro-cuttings treated with varying concentrations of IAA and IBA. The juvenile cuttings (size 6-10 cm, basal dia <0.25 cm) were selected as micro-cuttings. The cuttings treated with IBA (500 ppm) showed 64.30% rooting as compared to other treatments. Results of above experiments indicate that cuttings (size 0.75-1.00 cm dia) may be developed in mist chamber for better performance. While using heavier cuttings, no growth promoting hormones is required however; growth regulator 200 ppm concentration of IBA rooting hormone was observed optimum for promoting macro-propagation in stem cuttings of lower diameter class (0.25-0.50 cm).

The effect of varying peripheral bone structure and bone density on the occlusal stress distribution of human premolar regions (사람 소구치부위에서 주위골의 구조 및 밀도변화가 교합력에 의한 치아의 응력분포에 미치는 영향)

  • Suh, Ye-Joon;Shim, June-Sung;Lee, Keun-Woo;Chung, Moon-Kyu;Lee, Ho-Yong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • This study used FEM(Finite Element method) based on micro-CT images to see the effects of occlusal force distribution with varying bone density and structure. the mandibular premolar region from human cadaver, thickness of 10mm was imaged using micro-CT. the cross sectional images were taken every $10{\mu}m$. these were reconstructed and the longitudinal image at the mid point of mesiodistal of the speciman was obtained for the specimen for the FEM. The stress disribution produced by a vertical force at 100N and 100N horizontal were analyzed by MSC Nastran FEM Package. according to the result of this study the occlusal force distribution depends on the structure of cancellus bone and for further information on the occlusal force distribution on the tooth and the surrounding structure requires further studies on cancellus bone structure. CEJ of all model show the highest peak and region whice meet teeth and bone show second high peak. Original model and cortical bone add model show different stress distribution. Stress distribution changed according to bone structures and densities.