• Title/Summary/Keyword: varying coefficients

Search Result 365, Processing Time 0.025 seconds

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

A Study on the Relationship Between the Locational Characteristics of Oriental Medicine Hospitals and the Number of Patients (한방병원의 입지특성과 내원환자 규모 간의 관계에 관한 연구)

  • Lee, Kwang-Soo;Hong, Sang-Jin
    • Health Policy and Management
    • /
    • v.20 no.4
    • /
    • pp.97-113
    • /
    • 2010
  • The purpose of this study was to analyze the relationship between the locational characteristics of areas surrounding oriental medicine hospitals and the number of patients who visited study hospitals. Administrative data collected from the annual report of 5 ward offices in Daejeon used to assess the geographical attributes. Two oriental medicine hospitals operated in Daejeon provided data for the number of inpatient and outpatient. Number of patients who visited study hospitals was calculated in each Dong which is the smallest administrative district. The geographical attributes of Daejeon were evaluated by the demographic and economic factors which were assumed to influence the health care demand. Each criterion was measured from each Dong. Weights of factors was calculated by Analytic Hierarchy Process (AHP) method. Evaluation scores which representing the geographical attributes of Dong was computed by multiplying the eight factors and weights. Results showed positive correlation coefficients between the evaluation scores of Dong and the number of patients. One hospital which was more closely located to areas with high evaluation scores had higher number of patients than that of the other hospital. Buffering analysis with varying size support the analysis results. This finding proposed the importance of location for the management of oriental medicine hospitals in a metropolitan city. Applying study model to other cities will enhance the validity of study results.

Real-space TB-LMTO-recursion Electronic Structure Calculations for Ferromagnetic Fe, Co, and Ni (실공간 TB-LMTO-recursion 전자구조 방법에 의한 자성연구 : Fe, Co, Ni)

  • 박진호;조화석;윤석주;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.846-853
    • /
    • 1995
  • In order to study electronic structures for locally disordered systems, we have developed a first-principle self-con-sistent-spin-polarized real space band method (TB-LMTO-R), which combines the tight-binding(TB) linear-muffin-tin orbital(LMTO) band rrethod and the recursion(R) rrethod. The TB-LMTO-R rrethod has been applied to fer-romagnetic bec Fe, hcp Co, and fcc Ni. With varying cluster sizes, recursion coefficients, and the order of the TB-Hamiltonian, we have calculated the local density of states(LDOS) and magnetic moments. It is found that the calculation with 5,000 atoms cluster, 40 continued fractions, and the second-order TB-Hamiltonian yields a conver¬gent result in agreement with those from the conventional LMTO. In this way, we have demonstrated a physical transparency of the TB-LMTO-R method as a real space description.

  • PDF

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.

Comparing the precision of panoramic radiography and cone-beam computed tomography in avoiding anatomical structures critical to dental implant surgery: A retrospective study

  • Ozalp, Oznur;Tezerisener, Huseyin Alican;Kocabalkan, Burak;Buyukkaplan, Ulviye Sebnem;Ozarslan, Mehmet Mustafa;Kaya, Goksel Simsek;Altay, Mehmet Ali;Sindel, Alper
    • Imaging Science in Dentistry
    • /
    • v.48 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the correlations between measurements made using panoramic radiography and cone-beam computed tomography (CBCT) based on certain anatomical landmarks of the jaws, with the goal of preventing complications due to inaccurate measurements in the pre-surgical planning phase of dental implant placement. Materials and Methods: A total of 56 individuals who underwent panoramic radiography and a CBCT evaluation before dental implant surgery were enrolled in the study. Measurements were performed to identify the shortest vertical distance between the alveolar crest and neighboring anatomical structures, including the maxillary sinus, nasal floor, mandibular canal, and foramen mentale. The differences between the measurements on panoramic radiography and CBCT images were statistically analyzed. Results: Statistically significant differences were observed between the measurements on panoramic radiography and CBCT for all anatomical structures (P<.05). The correlation coefficients (r) between the paired samples obtained from panoramic radiography and CBCT were closely correlated (P<.05), with r values varying from 0.921 and 0.979 for different anatomical regions. Conclusion: The results of this study support the idea that panoramic radiography might provide sufficient information on bone height for preoperative implant planning in routine cases or when CBCT is unavailable. However, an additional CBCT evaluation might be helpful in cases where a safety margin cannot be respected due to insufficient bone height.

Effects of the Changes in Flow Pattern on Convective Heat Transfer in the Vicinity of Pipe Elbow (유동형태 변화가 배관 곡관부 대류열전달에 미치는 영향)

  • Song, Seung-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • In this study, by varying flow patterns, which is one of the hydraulic factors of FAC, a strategy to reduce pipe wall thinning by mass transfer has been investigated. A similarity between heat transfer and mass transfer was verified via theoretical analysis, and local convective heat transfer coefficients were analyzed using a commercial numerical analysis program. When ribs were installed inside and outside of the internal surface in the straight section of the pipe, the maximum local heat transfer coefficient was shown to decrease substantially by up to 24.9% compared to the basic flow depending on the position and shape of ribs. If a guide vein was inserted in the pipe elbow, the maximum local heat transfer coefficient decreased by up to 26.7% compared to the basic flow depending on the internal surface area of the pipe by the guide vein.

Optimal positioning of reaction wheel assemblies of optical observation satellite for minimizing image quality degradation (광학관측위성의 영상품질열화 최소화를 위한 반작용휠 최적위치 선정)

  • Im, Jeong Heum;Lim, Jae Hyuk;Kim, Kyung-Won;Yoon, Hyung-Joo;Kim, Sung-Hoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2018
  • This paper describes how to find out the optimum position of the reaction wheel assembly (RWA) to minimize image quality degradation through the integrated system jitter prediction combining the micro-vibration test with finite element analysis considering optical coefficients. Micro-vibration generated from RWA that is widely used for satellite maneuver, is one of key factors that degrades the quality of satellite image. Due to varying vibration characteristics of each RWA, its accommodation position may affect image quality even though the same company manufactured them. To resolve this issue, an integrated system jitter prediction is conducted with all possible RWA accommodation location, and finally we determine optimal RWA position from the analysis results.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Time-domain coupled analysis of curved floating bridge under wind and wave excitations

  • Jin, Chungkuk;Kim, MooHyun;Chung, Woo Chul;Kwon, Do-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.399-414
    • /
    • 2020
  • A floating bridge is an innovative solution for deep-water and long-distance crossing. This paper presents a curved floating bridge's dynamic behaviors under the wind, wave, and current loads. Since the present curved bridge need not have mooring lines, its deep-water application can be more straightforward than conventional straight floating bridges with mooring lines. We solve the coupled interaction among the bridge girders, pontoons, and columns in the time-domain and to consider various load combinations to evaluate each force's contribution to overall dynamic responses. Discrete pontoons are uniformly spaced, and the pontoon's hydrodynamic coefficients and excitation forces are computed in the frequency domain by using the potential-theory-based 3D diffraction/radiation program. In the successive time-domain simulation, the Cummins equation is used for solving the pontoon's dynamics, and the bridge girders and columns are modeled by the beam theory and finite element formulation. Then, all the components are fully coupled to solve the fully-coupled equation of motion. Subsequently, the wet natural frequencies for various bending modes are identified. Then, the time histories and spectra of the girder's dynamic responses are presented and systematically analyzed. The second-order difference-frequency wave force and slowly-varying wind force may significantly affect the girder's lateral responses through resonance if the bridge's lateral bending stiffness is not sufficient. On the other hand, the first-order wave-frequency forces play a crucial role in the vertical responses.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.