• Title/Summary/Keyword: varying coefficients

Search Result 360, Processing Time 0.031 seconds

Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms (시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교)

  • Park, Boram;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.697-712
    • /
    • 2013
  • When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part II : A Driven High-Speed Compressor Pinion-Impeller Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part II : 피동 고속 압축기 피니언-임펠러 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1042-1049
    • /
    • 1999
  • In the Part I has been reported a rotordynamic analysis of the driving motor-bull gear rotor-bearing system of a turbo-chiller. In this study, Part II, a rotordynamic analysis is performed with the turbo-chiller compressor pinion-impeller rotor system supported on two fluid film bearings. The pinion-impeller rotor system is driven to a rated speed of 14,600 rpm through a speed-increasing pinion-bull gear. It is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support bearings, the generalized forces of the gear action as well as the rotor itself. The two support bearings, partial and 3-axial groove bearings, are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the compressor pinion-impeller rotor-bearing system is carried out to evaluate its stability, whirl natural frequencies and mode shapes, and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regardless of operating conditions, i.e., loads and operating speeds.

  • PDF

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

Estimation of wind pressure coefficients on multi-building configurations using data-driven approach

  • Konka, Shruti;Govindray, Shanbhag Rahul;Rajasekharan, Sabareesh Geetha;Rao, Paturu Neelakanteswara
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.127-142
    • /
    • 2021
  • Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.

Dynamic Response Analysis of Top-tensioned Riser Under Sheared Current Load (전단류 하중을 받는 상부장력 라이저의 동적 응답 해석)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2013
  • A numerical scheme based on a mode superposition method is presented for the dynamic response analysis of a top-tensioned riser (TTR) under sheared current loads. The natural frequencies and mode shapes of the TTR have been calculated analytically for a beam with a slowly varying tension and pinned-pinned boundary conditions at the top and bottom ends. The lift coefficients and corresponding amplitudes used to estimate the vortex-induced modal force and damping for each mode were predicted via iterative calculations based on the input and output power balancing concept. Here, the power-in regions were controlled by the normal distribution function, for which the center was coincident with the lock -in location by local vortex-shedding, and the range was defined by the constant standard deviation for the reduced velocity by the local current speed. Finally, dynamic responses such as root-mean-squared displacement and stress were calculated using the mode superposition technique. In order to verify the presented scheme, a numerical calculation was performed for a TTR under an arbitrary linearly sheared current and linearly varying tension. A comparison with the results of the existing software showed that the presented scheme could give reliable and feasible solutions. Case studies were performed to investigate the effects of various current loads and tensions.

Study of Virtual Goods Purchase Model Applying Dynamic Social Network Structure Variables (동적 소셜네트워크 구조 변수를 적용한 가상 재화 구매 모형 연구)

  • Lee, Hee-Tae;Bae, Jungho
    • Journal of Distribution Science
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2019
  • Purpose - The existing marketing studies using Social Network Analysis have assumed that network structure variables are time-invariant. However, a node's network position can fluctuate considerably over time and the node's network structure can be changed dynamically. Hence, if such a dynamic structural network characteristics are not specified for virtual goods purchase model, estimated parameters can be biased. In this paper, by comparing a time-invariant network structure specification model(base model) and time-varying network specification model(proposed model), the authors intend to prove whether the proposed model is superior to the base model. In addition, the authors also intend to investigate whether coefficients of network structure variables are random over time. Research design, data, and methodology - The data of this study are obtained from a Korean social network provider. The authors construct a monthly panel data by calculating the raw data. To fit the panel data, the authors derive random effects panel tobit model and multi-level mixed effects model. Results - First, the proposed model is better than that of the base model in terms of performance. Second, except for constraint, multi-level mixed effects models with random coefficient of every network structure variable(in-degree, out-degree, in-closeness centrality, out-closeness centrality, clustering coefficient) perform better than not random coefficient specification model. Conclusion - The size and importance of virtual goods market has been dramatically increasing. Notwithstanding such a strategic importance of virtual goods, there is little research on social influential factors which impact the intention of virtual good purchase. Even studies which investigated social influence factors have assumed that social network structure variables are time-invariant. However, the authors show that network structure variables are time-variant and coefficients of network structure variables are random over time. Thus, virtual goods purchase model with dynamic network structure variables performs better than that with static network structure model. Hence, if marketing practitioners intend to use social influences to sell virtual goods in social media, they had better consider time-varying social influences of network members. In addition, this study can be also differentiated from other related researches using survey data in that this study deals with actual field data.

Experiments on Condensation Heat Transfer Characteristics Inside a Microfin Tube with R410A (마이크로 휜관낸 R410A의 응축열전달 특성에 관한 실험적 연구)

  • Han, Dong-Hyeok;Jo, Yeong-Jin;Lee, Gyu-Jeong;Park, Sim-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1470-1477
    • /
    • 2000
  • Due to the ozone depletion and global warming potentials, some refrigerants(CFx and HCFCs) have been rapidly substituted. R410A is considered as the alternative refrigerant of R22 for the air-conditioners used a home and in industry. Experiments on the condensation heat transfer characteristics inside a smooth or a micro-fin tube with R410A are performed in this study. The test tubes 7/9.52 mm in outer diameters and 3 m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. It is shown that the heat transfer is enhanced and the amount of pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficient and the pressure penalty factor, it is found that the high heat transfer enhancement coefficients are obtained in the range of small mass flux while the penalty factors are almost equal.

Effects of wind barriers on running safety of trains for urban rail cable-stayed bridge

  • He, Wei;Guo, Xiang-Rong;Zhu, Zhi-hui;Deng, Pengru;He, Xu-hui
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.43-57
    • /
    • 2020
  • Considering the wind barriers induced aerodynamic characteristic variations of both bridge deck and trains, this paper studies the effects of wind barriers on the safety and stability of trains as they run through an urban rail transit cable-stayed bridge which tends to be more vulnerable to wind due to its relatively low stiffness and lightweight. For the bridge equipped with wind barriers of different characteristics, the aerodynamic coefficients of trains and bridge decks are obtained from wind tunnel test firstly. And then, the space vibration equations of the wind-train-bridge system are established using the experimentally obtained aerodynamic coefficients. Through solving the dynamic equations, one can calculate the dynamic responses both the trains and bridge. The results indicate that setting wind barriers can effectively reduce the dynamic responses of both the trains and bridge, even though more wind forces acting on the bridge are caused by wind barriers. In addition, for urban rail transit cable-stayed bridges located in strong wind environment, the wind barriers are recommended to be set with 20% porosity and 2.5 m height according to the calculation results of cases with wind barriers porosity and height varying in two wide ranges, i.e., 10% - 40% and 2.0 m to 4.0 m, respectively.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.