• Title/Summary/Keyword: various thermal distributions

Search Result 142, Processing Time 0.027 seconds

Numerical Study of Miro-Contact Surface Induced Hot Spots in Friction Brakes (마찰식 브레이크의 미세 접촉면에 발생된 적열점 현상의 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.268-273
    • /
    • 2003
  • This paper presents hot spot behaviors on the rubbing surface of disk-pad type brake by using coupled thermal-mechanical analysis technique. The height of micro-asperity on the rubbing surface is usually 2∼3 ${\mu}$m in practical disk brakes. Non-uniform micro-contacts between the disk and the rigid friction pads lead to high local temperature distributions, which may cause the material degradation, and develop hot spots, thermal cracks, and brake system failure at the end for a braking period. The friction temperatures on the rubbing surface of disk brakes in which are strongly related to the hot spot and thermal related wears are rapidly concentrated on the micro-contact asperities during braking. The computed FEM results show that the contact stress, friction induced temperature and thermal strain are highly concentrated on the rubbing micro-contact asperities even though the braking speed and force are small during the braking period. This hot spot may directly produce the slippage and various thermal wears on the brake-rubbing surface.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

A Study on the Thermal Characteristics of 110kW-class IPMSM for Light Railway Transit using the 3-Dimensional Thermal Equivalent Network considering Heat Source by Iron Loss Density Distributions (철손밀도 분포에 의한 열원이 고려된 3차원 열등가회로망을 이용한 경량전철 구동용 110kW급 IPMSM의 열 특성 연구)

  • Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1038-1044
    • /
    • 2013
  • A research on thermal analysis method is conducted for the characterization of heat generation during operation of Interior Permanent Magnet Synchronous Motor(IPMSM) for Light Railway Transits(LRT) in this paper. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnet makes it harder for a long time continuous operation of IPMSM. Therefore, in order to analyze the heat generation characteristics of the 110kW-class IPMSM as advanced research for application the IPMSM to the cooling device, the heat transfer coefficients for each component of the 110 kW-class IPMSM were derived and the thermal equivalent network was configured to perform the thermal analysis in this study. Finally, the 110kW-class IPMSM prototype is made and a comparative verification between the test data and the thermal analysis results through its various performance tests are carried out.

Performance and Thermal-Flow Characteristics in a Planar Type Solid oxide Fuel Cell with Single Channel and Multi-Channel (단일채널 및 다채널을 포함한 평판형 고체산화물연료전지의 열유동 해석 및 성능평가)

  • Ahn, Hyo-Jung;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1033-1041
    • /
    • 2007
  • This paper studied the characteristics of performance and temperature in a unit cell of a planar type SOFC under various conditions by employing computational fluid dynamics (CFD). In order to derive thermal stress distribution and performance characteristics, the 3-D model simulation for a single channel was performed in various conditions which include interconnect materials $(LaCrO_3/AISI430)$, gas flow direction (co-flow/counter-flow) and inlet temperature (923 K/1173 K). From these results of a single channel, the most effective conditions were applied to the unit stack with multi-channel and the temperature distribution is displayed. Considering both thermal stress and performance, the best combination is 923 K inlet temperature, counter-flow and interconnector of stainless steel. As the end results, flow, thermal and current density distributions were found in the model with multi-channel applied to the best combination and were concentrated in the middle of channels than in the edge.

Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory

  • Ebrahimi, Farzad;Mahmoodi, Fateme;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.279-301
    • /
    • 2017
  • Thermo-mechanical vibration characteristics of in homogeneousporous functionally graded (FG) micro/nanobeam subjected to various types of thermal loadings are investigated in the present paper based on modified couple stress theory with consideration of the exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which shear deformation effect is verified needless of shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of FG micro/nanobeam. Temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Extended Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

Maximum Allowable $RT_{NDT}$ of Nuclear Reactor Vessel for Pressurized Thermal Shock Accident (가압열충격 사고에 대한 원자로 용기의 최대 허용 기준무연성천이온도)

  • 정명조;박윤원;송선호
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.153-160
    • /
    • 1998
  • A small break loss of coolant accident is postulated as a pressurized thermal shock accident in this study. From the temperature and pressure histories of coolant, distributions of the temperature and stress in a vessel wall are analytically calculated. The stress intensity factor and fracture toughness of the vessel wall are determined at the crack tip using the ASME code method and they are compared to check if cracking is expected to occur during the transient postulated. The maximum allowable reference nil-ductility transition temperatures are determined for various crack sizes and the results are discussed.

  • PDF

Laboratory Experiment to Characterize Thermal Properties of Recycled-Aggregate Backfill (실내시험을 통한 송배전관로 뒤채움재용 순환골재의 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Han, Eun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1231-1238
    • /
    • 2010
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been increasing due to the issues of eco-friendly construction and shortage of natural aggregate resource. It is important to investigate the physical and thermal properties of the recycled aggregates that can be used as a backfill material. This study presents the thermal properties of two types of recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregate were measured using the transient hot wire method and the probe method after performing the standard compaction test using an automatic compactor. Similar to silica sand, the thermal resistivity of the recycled aggregates decreased when the water content increased. This study shows that the recycled aggregate can be a promising backfill material substituting for natural aggregate when backfilling the power transmission pipeline trench.

  • PDF

CFD Simulations of the Ground Surface Temperature and Air Temperature, Air flow Coupled with Solar Radiation (태양복사열에 따른 지표면 온도와 열, 기류 환경 시뮬레이션 연구)

  • Lee, JuHee;Kim, JaeGwon;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The thermal environment in a small city rapidly deteriorates due to the urbanization and overpopulation. It is important to understand and predict the thermal environment in a city area. The thermal environment is highly affected by the solar radiation and temperature distributions changing over time periodically. To predict the thermal environment precisely, the solar radiation calculation including radiation strength, incidence angle, and thermal radiation between building surface and ground should be considered. In this study, the computational domain includes various artificial structures such as building, ground, asphalt, brick and grass. To consider the solar radiation, the unsteady state numerical calculation is performed from sun rise to mid-day (2:00pm). The numerical methods consist of solar load and one dimensional heat conduction through the boundaries to reduce the computational load and improve the flexibility of the calculation.

Effect of Wall Thickness on Thermal Behaviors of RC Walls Under Fire Conditions

  • Kang, Jiyeon;Yoon, Hyunah;Kim, Woosuk;Kodur, Venkatesh;Shin, Yeongsoo;Kim, Heesun
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.19-31
    • /
    • 2016
  • The objective of this paper is to investigate the effect of thickness and moisture on temperature distributions of reinforced concrete walls under fire conditions. Toward this goal, the first three wall specimens having different thicknesses are heated for 2 h according to ISO standard heating curve and the temperature distribution through the wall thickness is measured. Since the thermal behavior of the tested walls is influenced by thickness, as well as moisture content, three additional walls are prepared and preheated to reduce moisture content and then tested under fire exposure. The experimental results clearly show the temperatures measured close to the fire exposed surface of the thickest wall with 250 mm thickness is the highest in the temperatures measured at the same location of the thinner wall with 150 mm thickness because of the moisture clog that is formed inside the wall with 250 mm of thickness. This prevents heat being transferred to the opposite side of the heated surface. This is also confirmed by the thermal behavior of the preheated walls, showing that the temperature is well distributed in the preheated walls as compared to that in non-preheated walls. Finite element models including moisture clog zone are generated to simulate fire tests with consideration of moisture clog effect. The temperature distributions of the models predicted from the transient heat analyses are compared with experimental results and show good agreements. In addition, parametric studies are performed with various moisture contents in order to investigate effect of moisture contents on the thermal behaviors of the concrete walls.