• Title/Summary/Keyword: various dairy products

Search Result 180, Processing Time 0.028 seconds

A Review on Camel Milk Composition, Techno-Functional Properties and Processing Constraints

  • Muhammad Asif Arain;Hafiz Muhammad Salman;Mehboob Ali;Gul Bahar Khaskheli;Ghulam Shabir Barham;Illahi Bakhash Marghazani;Shabbir Ahmed
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.739-757
    • /
    • 2024
  • Camel milk plays a critical role in the diet of peoples belongs to the semi-arid and arid regions. Since prehistoric times, camel milk marketing was limited due to lacking the processing facilities in the camel-rearing areas, nomads practiced the self-consumption of raw and fermented camel milk. A better understanding of the techno-functional properties of camel milk is required for product improvement to address market and customer needs. Despite the superior nutraceutical and health promoting potential, limited camel dairy products are available compared to other bovines. It is a challenging impetus for the dairy industry to provide diversified camel dairy products to consumers with superior nutritional and functional qualities. The physicochemical behavior and characteristics of camel milk is different than the bovine milk, which poses processing and technological challenges. Traditionally camel milk is only processed into various fermented and non-fermented products; however, the production of commercially important dairy products (cheese, butter, yogurt, and milk powder) from camel milk still needs to be processed successfully. Therefore, the industrial processing and transformation of camel milk into various products, including fermented dairy products, pasteurized milk, milk powder, cheese, and other products, require the development of new technologies based on applied research. This review highlights camel milk's processing constraints and techno-functional properties while presenting the challenges associated with processing the milk into various dairy products. Future research directions to improve product quality have also been discussed.

Development of Quality Milk and Dairy Products by Freeze Concentration (동결농축에 의한 고품질의 우유 및 유제품의 개발)

  • Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.185-193
    • /
    • 1996
  • This study was to investigate principle of freeze concentration such as nucleation, crystal growth and procedure of freeze concentration, essential factor and application of freeze concentration. Especially, quality of milk was emphasized. For exemple, in sensory evaluation of freeze concentrated and reconstituted skim milk and whole milk, taste, color, mouth feel and texture were superior to control. Recently developed technique of freeze concentration for quality milk and dairy products may be expected for advanced quality of various milk and dairy products in near future.

  • PDF

Application of Dairy Food Processing Technology Supplemented with Enriched-nutrients for the Elderly: II. The Applicable Technology of Carefoods for the Elderly (고령자를 위한 영양강화 유제품 개발 II. 고령자 영양강화 적용 기술 현황)

  • Kim, Bum Keun;Jang, Hae Won;Choi, Ga Hee;Moon, Yong-Il;Oh, Sejong;Park, Dong June
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.213-222
    • /
    • 2019
  • Milk and dairy products are the high value foods for the elderly population. In particular, fermented milk is the best source of calcium for people in the specific age group of over 79 years. It provides a good source of protein. Regular exercise and active lifestyle are recommended to slow down the muscle loss. However, exercising without proper nutrient intake is simply not sufficient at this age. Milk and dairy products provide the iron and protein content required for effective exercise-assisted growth. Milk nutrients have the advantage of being produced in various food forms, such as liquid, semi-solid, and powder types. Fat-soluble vitamins such as retinol and vitamin K can be encapsulated using various technologies for milk and dairy products. Using the encapsulation method, spray drying and fluidized-bed coating have been used for adding the micro-nutrients to the food. Microencapsulation technology is being applied in case of the fermented dairy products too. In particular, various wall materials are being developed to enhance the viability of probiotics. In the near future, advanced high-efficiency technologies that can effectively nourish the dairy products with nutrients will be developed to produce targeted high-nutrition value food for the elderly.

Development of Functional Milk and Dairy Products by Nanotechnology (나노 기술을 이용한 기능성 우유 및 유제품의 개발 연구)

  • Gwak, Hae-Su
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.27-37
    • /
    • 2005
  • The development of functional foods started booming from several years ago in the world. The size of functional materials are in the range of micrometer level. This size can be much smaller into nanometer level to be more effective. We face some problems from the materials, such as flavor, taste, color, viscosity, etc. in functional materials. The problems can be solved by micro / nanoencapsulation technique. This paper showed some results of the research related on the technique for functional milks and dairy products. The nono / microcapsules are the form of liquid instead of solid. Coating materials used were fatty acid esters, and core materials were lactase, iron, ascorbic acid. isoflavone, and chitooligosaccharide. The ranges of capsules are from 100 nm to 200 ${\mu}$m. The sample milks added nano/microcapsules were homogeneous and prevented the defects of core materials. It was observed that nano / microcapsules in milk and dairy products were effective as functional material without defaults. It was indicated that targeted functional foods can be developed further in various foods by nanotechnology.

  • PDF

The Consideration of Chinese Dairy Industry (중국의 유가공 산업 고찰)

  • Lee, Jong-Uk;Min, Byeong-Tae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.49-63
    • /
    • 2005
  • China that holds various and plentiful food resources had little growth in dairy industry compared with her long history. But after the establishment the People's Republic of China, It began to activate. Because of the economic growth and the improvement of living standard of China, dairy products were becoming common food, so Chinese dairy industry was considering as a industry which accomplishes a rapid growth. On the ground of a sudden economic growth, the progress of income level of China and the open economy, the world dairy industry was concerned about the Chinese market, so, the Chinese dairy industry would bring an exorbitant change in the world dairy industry. Therefore, We Korean dairy industry must make inroads into the Chinese market by making a royalty profit through the transfer of technical know-how and the export of dairy products.

  • PDF

A Review on Processing Opportunities for the Development of Camel Dairy Products

  • Muhammad Asif Arain;Sundus Rasheed;Arham Jaweria;Gul Bahar Khaskheli;Ghulam Shabir Barham;Shabbir Ahmed
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.383-401
    • /
    • 2023
  • Camel milk has a significant and pivotal role in the diet of people residing in semi-arid and arid regions. Ever since ancient times, marketing of camel milk has remained insignificant due to nonexistence of processing amenities in the camel nurturing areas, hence the utilization of unprocessed camel milk has continuously remained limited at family level by the nomads. Due to the superior medicinal values and health promoting effects, incredible growth in the demand of camel milk and dairy products have been noticed all over the world during last two decades. Such emergence has led dairy industry to provide diversified camel dairy products to the consumers with superior nutritional and functional qualities. In contrast to bovine, very few food products derived from camel milk are available in the present market. With the advancements in food processing interventions, a wide range of dairy and non-dairy products could be obtained from camel milk, including milk powder, cheese, yogurt, ice cream, and even chocolate. In some regions, camel milk is used for traditional dishes such as fermented milk, camel milk tea, or as a base for soups and stews. Current review highlights the processing opportunities regarding the transformation of camel milk into various dairy products via decreasing the inherent functionality that could be achieved by optimization of processing conditions and alteration of chemical composition by using fortification method. Additionally, future research directions could be devised to improve the product quality.

Natural Benzoic Acid and Dairy Products: A Review (천연유래 안식향산과 유제품: 총설)

  • Lim, Sang-Dong;Kim, Kee-Sung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • Benzoic acid is widely used in the food industry as a preservative in acidic foods, owing to its antimicrobial activity against various bacteria, yeasts, and fungi. Benzoic acid occurs naturally in different foods such as fruits, vegetables, spices, and nuts as well as in milk and dairy products. Lactic acid bacteria convert hippuric acid, which is naturally present in milk, to benzoic acid; therefore, the latter could also be considered as a natural component of milk and milk products. Benzoic acid is also produced during the ripening of cheese by the propionic acid fermentation process that follows lactic acid fermentation. This paper, we provide basic information regarding the systematic control of natural benzoic acid levels in raw materials, processing intermediates, and final products of animal origin.

  • PDF

Composition, Structure, and Bioactive Components in Milk Fat Globule Membrane

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • A unique biophysical membrane which surrounds the milk fat globules is called the milk fat globule membrane (MFGM). Various researches were studied about origin, composition, structure and bioactive components of MFGM. Bioactive protein components of MFGM play an important beneficiary function such as defense mechanism in new born. Among the bioactive lipid components from MFGM phospholipids showed health enhancing functions. The phospholipids also help in the production of certain dairy product from deterioration. MFGM phospholipids also showed antioxidant activity in some dairy products such as butter and ghee produced from milk of buffalo. Based on the beneficial effects, researchers developed MFGM as functional ingredients in various food products. This current review focuses on health enhancing function of MFGM and its components in various dairy products.

Nonthermal Sterilization of Animal-based Foods by Intense Pulsed Light Treatment

  • Gyeong Mi Lee;Jung-Kue Shin
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.309-325
    • /
    • 2024
  • The consumption of meat has been increasing, leading to a dynamic meat and meat processing industry. To maintain the quality and safety of meat products, various technologies have been explored, including intense pulsed light (IPL) technology. Several factors affect the inactivation of microorganisms by IPL treatment, including light intensity (fluence), treatment duration, pulse frequency, and the distance between the lamp and the samples. Meat products have been studied for IPL treatment, resulting in microbial reductions of approximately 0.4-2.4 Log. There are also impacts on color, sensory attributes, and physico-chemical quality, depending on treatment conditions. Processed meat products like sausages and ham have shown microbial reductions of around 0.1-4 Log with IPL treatment. IPL treatment has minimal impact on color and lipid oxidation in these products. Egg products and dairy items can also benefit from IPL treatment, achieving microbial reductions of around 1-7.8 Log. The effect on product quality varies depending on the treatment conditions. IPL technology has shown promise in enhancing the safety and quality of various food products, including meat, processed meat, egg products, and dairy items. However, the research results on animal-based food are not diverse and fragmentary, this study discusses the future research direction and industrial application through a review of these researches.

Organoleptic Properties of Cow Milk, Yoghurt, Kefir, and Soy Milk When Combined with Broccoli Oil: A Preliminary Study

  • Kim, Tae-Jin;Seo, Kun-Ho;Chon, Jung-Whan;Youn, Hye-Young;Kim, Hyeon-Jin;Kim, Young-Seon;Kim, Binn;Jeong, Soo-Yeon;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.76-85
    • /
    • 2022
  • Broccoli sprouts are an excellent source of health-promoting phytochemicals, such as glucosinolates, phenols, and vitamins. In this investigation, oil extracted from broccoli was adjusted to various concentrations (control, 1%, 2%, 3%, 4%, and 5%, respectively) and added directly to dairy products (cow milk, yoghurt, and kefir) and non-dairy products (soy milk), and their organoleptic properties assessed. The results showed that when the amount of broccoli oil was increased, the organoleptic properties (texture, color, and flavor) and overall acceptability tended to decrease. Cow milk, yoghurt, kefir, and soymilk supple-mented with 1% broccoli oil showed the best organoleptic properties when compared to the control group. The fermented products such as yoghurt and kefir with added broccoli oil showed good organoleptic properties. Overall, the results of this study provide evidence for the use of broccoli oil in dairy and non-dairy products. Further research will be required to assess the various physiological active functions of broccoli oil.