• Title/Summary/Keyword: variance errors.

Search Result 236, Processing Time 0.028 seconds

A COMPARATIVE STUDY ON AUDITORY ATTENTION AND PHONEME DIFFERENTIAL ABILITY AMONG CHILDREN WITH READING DISABILITY AND WITH ATTENTION DEFICIT/HYPERACTIVITY (읽기 장애와 주의력 결핍/과잉 운동 장애아동의 주의력 과제와 음소 변별 과제 수행 비교 - 청각 과제를 중심으로 -)

  • Lee, Kyung-Hee;Shin, Min-Sup;Kim, Boong-Nyun;Cho, Soo-Churl
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.14 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • Objective:In this study, we hypothesized that deficit in processing rapid linguistic stimuli is at the heart of Reading Disability(RD) and deficit in response inhibition is at the heart of Attention Deficit/Hyperactivity(ADHD). We conducted experiments to identify the core cognitive characteristics of children either with RD or with ADHD or with both, using attentional tasks and phoneme differential tests. Method:In the study 1, 28 children with ADHD, 16 children with RD+ADHD were individually administered visual/auditory performance tests. Then, the differences of performance on attentional tasks between two groups were compared while IQs of two groups were controlled. In the study 2, 13 children with RD+ADHD/RD, 13 children with ADHD, and 13 normal children were administered computerized phoneme differential tests. Result:Visual attentional tasks did not distinguish an ADHD group from a RD+ADHD group. With auditory attentional tasks, however, the comorbid group showed significantly more difficulties, causing a large variance in reaction time. RD, RD+ADHD, and ADHD groups showed more errors in phoneme differential tests than a normal control group, and each group showed distinctive performance patterns. Discussion:An ADHD group had difficulty in response inhibition and sustained attention, and children who also had RD along with ADHD magnified the auditory attentional difficulties. Even though children with RD had more trouble with responding correctly to target stimuli, their responses were not significantly different from those of children with ADHD.

  • PDF

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Study on the Genetic Variations of the Economic Traits by Backcrossing in Commercial Chickens (실용계군에 있어서 누진퇴교배에 의한 주요경제형질의 유전적 변이에 관한 연구)

  • 이종극;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.16 no.2
    • /
    • pp.61-71
    • /
    • 1989
  • The purposes of this study were to investigate the genetic variations by backcrossing in commercial chickens. Backcrossing was carried out successively back to parent stock (P.S). Heritabilities and genetic correlation coefficients were estimated to verify the genetic variations. The data obtained from a breeding programme with commercial chickens (I strain) were collected from 1955 to 1987 at Poultry Breeding Farm, Seoul National University. Data came from a total of 1230 female offspring. The results obtained are summarized as follows: 1. The general performance ($Mean\pmStandard deviation$) of each trait was $663.94\pm87.11$g for 8 weeks body weight, $1579.1\pm155.43$g for 20 weeks body weight, $2124.1\pm215.3$g for 40 weeks body weight, $2269.1\pm242.94$g for 60 weeks body weight, $168.43\pm12.94$ day for a9e at sexual maturity (SM), $214.52\pm29.82$ eggs , for total egg number to 60 weeks of age (TEN), $61.45\pm3.48$ g for average weight (AEW), $13180.7\pm1823.22$ g for total egg mass to 60 weeks of age(TEM). All traits, except 10 weeks body weight and AEW, were significant for the degrees of backcross (p<0.01). 2. The pooled estimates of heritabilities derived from the sire, dam and combined variance components were 0.47~0.52 for age at sexual maturity (SM), 0.07~0.37 for total egg number (TEN), 0.40~0.54 for average egg weight (AEW), 0.18~0.27 for total egg mass (TEM). High heritability estimates were found for SM and AEW. TEN and TEM were estimated to be a lowly heritable traits. Heritability estimates from dam components were higher than those from sire components. These differences might be due to non-additive genetic effect and maternal effect. 3. The estimates of heritabilities and standard errors derived from combined variance components for different degrees of backcross were $0.47\pm0.11$ (BCO), $0.42\pm0.16$ (BC1), $0.51\pm0.29$ (BC2) for TEN, $0.59\pm0.20$ (BCO), $0.43\pm0.17$ (BC1), $0.35\pm0.18$ (BC2) for AEW, $0.28\pm0.12$(BC0), $0.20\pm0.11$(BC1), $0.18\pm0.14$ (BC2) for TEM. Heritability estimates for AEW and TEM were decreased by backcrossing while those for SM and TEN remained constant. Since backcrossing contributes to increased homozygosity, the genetic variation of the traits (AEW and TEM) decreased . 4. The pooled estimates of genetic correlation coefficients were -0.55 between SM and TEN, 0.20 between SM and AEW, -0.29 between TEN and AEW, 0.82 between TEM and TEN, 0.31 between TEM and AEW, -0.42 between TEM and SM. The genetic correlation between TEM and TEN was higher than that between TEM and AEW, and it was suggested that egg mass was strongly affected by egg number. Also, age at sexual maturity(SM) contributes to egg mass(TEM). 5. When backcrossing was carried out successively, the genetic correlation between TEM and TEN increased (BC0:0.79, BC1:0.82, BC2:0.91) but those between TEM and SM decreased (BC0:-0.54, BC1:-0.36, BC2:-0.09) with successive backcrosses.

  • PDF

A Data-based Sales Forecasting Support System for New Businesses (데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로)

  • Jun, Seung-Pyo;Sung, Tae-Eung;Choi, San
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • Analysis of future business or investment opportunities, such as business feasibility analysis and company or technology valuation, necessitate objective estimation on the relevant market and expected sales. While there are various ways to classify the estimation methods of these new sales or market size, they can be broadly divided into top-down and bottom-up approaches by benchmark references. Both methods, however, require a lot of resources and time. Therefore, we propose a data-based intelligent demand forecasting system to support evaluation of new business. This study focuses on analogical forecasting, one of the traditional quantitative forecasting methods, to develop sales forecasting intelligence systems for new businesses. Instead of simply estimating sales for a few years, we hereby propose a method of estimating the sales of new businesses by using the initial sales and the sales growth rate of similar companies. To demonstrate the appropriateness of this method, it is examined whether the sales performance of recently established companies in the same industry category in Korea can be utilized as a reference variable for the analogical forecasting. In this study, we examined whether the phenomenon of "mean reversion" was observed in the sales of start-up companies in order to identify errors in estimating sales of new businesses based on industry sales growth rate and whether the differences in business environment resulting from the different timing of business launch affects growth rate. We also conducted analyses of variance (ANOVA) and latent growth model (LGM) to identify differences in sales growth rates by industry category. Based on the results, we proposed industry-specific range and linear forecasting models. This study analyzed the sales of only 150,000 start-up companies in Korea in the last 10 years, and identified that the average growth rate of start-ups in Korea is higher than the industry average in the first few years, but it shortly shows the phenomenon of mean-reversion. In addition, although the start-up founding juncture affects the sales growth rate, it is not high significantly and the sales growth rate can be different according to the industry classification. Utilizing both this phenomenon and the performance of start-up companies in relevant industries, we have proposed two models of new business sales based on the sales growth rate. The method proposed in this study makes it possible to objectively and quickly estimate the sales of new business by industry, and it is expected to provide reference information to judge whether sales estimated by other methods (top-down/bottom-up approach) pass the bounds from ordinary cases in relevant industry. In particular, the results of this study can be practically used as useful reference information for business feasibility analysis or technical valuation for entering new business. When using the existing top-down method, it can be used to set the range of market size or market share. As well, when using the bottom-up method, the estimation period may be set in accordance of the mean reverting period information for the growth rate. The two models proposed in this study will enable rapid and objective sales estimation of new businesses, and are expected to improve the efficiency of business feasibility analysis and technology valuation process by developing intelligent information system. In academic perspectives, it is a very important discovery that the phenomenon of 'mean reversion' is found among start-up companies out of general small-and-medium enterprises (SMEs) as well as stable companies such as listed companies. In particular, there exists the significance of this study in that over the large-scale data the mean reverting phenomenon of the start-up firms' sales growth rate is different from that of the listed companies, and that there is a difference in each industry. If a linear model, which is useful for estimating the sales of a specific company, is highly likely to be utilized in practical aspects, it can be explained that the range model, which can be used for the estimation method of the sales of the unspecified firms, is highly likely to be used in political aspects. It implies that when analyzing the business activities and performance of a specific industry group or enterprise group there is political usability in that the range model enables to provide references and compare them by data based start-up sales forecasting system.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Compare to Evaluate the Imaging dose of MVCT and CBCT (Tomotherapy MVCT와 Linac CBCT의 Imaging dose 비교평가)

  • Yoon, Bo Reum;Hong, Mi Lan;Ahn, Jong Ho;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • Purpose : In case of the intensity modulated radiation therapy (IMRT) using Tomotherapy and linear accelerator (Linac), it was to compare and to evaluate the imaging dose of MVCT and CBCT that were performed daily for the correct set up of the patient. Materials and Methods : The human body model Phantom (Anderson rando Phantom, USA) was divided into the three parts as Head, Thorax, pelvis, and after GafChromic EBT3 film cut to the size of $0.5{\times}0.5cm2$.in the center of the recording area were situated on the ant, post, left, and right surface of the phantom and 2cm in depth from the ant, post, left, right, and center surface of the phantom, the surface dose and inner dose were measured repeatedly three times, respectively, using the tomotherapy (Hi Art) and the OBI of NovalisTx. The measured film calculated the output value by RIP version6.0 and then the average value of the dose was calculated by the one-way analysis of variance. Results : Using the human body model phantom, the results of MVCT and CBCT performance were that measurements of MVCT inner dose were showed $15.43cGy{\pm}6.05$ in the head, $16.62cGy{\pm}3.08$ in the thorax, $16.81cGy{\pm}5.24$ in the pelvis, and measurements of CBCT inner dose were showed $13.28{\pm}3.68$ in the head, from $13.66{\pm}4.04$ in the thorax, $15.52{\pm}3.52$ in the pelvis. The measurements of surface dose were showed in case of MVCT performance, $11.64{\pm}4.05$ in the head, $12.16{\pm}4.38$ in the thorax, $12.05{\pm}2.71$ in the pelvis, and in case of CBCT performance, $14.59{\pm}3.51$ in the head, $15.82{\pm}2.89$ in the thorax, $17.48{\pm}2.80$ in the pelvis, respectively. Conclusion : In case of Inner dose, the MVCT using MV energy showed higher than the CBCT using kV energy at 1.16 times in the head, at 1.22 times in the thorax, at 1.08 times in the pelvis, and in case of surface dose, the CBCT was higher than MVCT, at 1.25 times in the head, at 1.30 times in the thorax, at 1.45 times in the pelvis. Imaging dose was a small amount compared to the therapeutic dose but it was thought to affect partially to normal tissue because it was done in daily schedule. However, IMRT treatment was necessarily parallel with the IGRT treatment through the image-guide to minimize errors between planned and actual treatment. Thus, to minimize imaging dose that the patients receive, when planning the treatment, it should be set up a treatment plan considering imaging dose, or it must be performed by minimizing the scan range when shooting MVCT.