• Title/Summary/Keyword: variable-length gram

Search Result 4, Processing Time 0.02 seconds

An Efficient String Similarity Search Technique based on Generating Inverted Lists of Variable-Length Grams (가변길이 그램의 역리스트 생성을 이용한 효율적인 유사 문자열 검색 기법)

  • Kim, Jongik
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1275-1280
    • /
    • 2016
  • Existing techniques for string similarity search first generate a set of candidate strings and then verify the candidates. The efficiency of string similarity search is highly dependent on candidate generation methods. State of the art techniques select fixed length q-grams from a query string and generate candidates using inverted lists of the selected q-grams. In this paper, we propose a technique to generate candidates using variable length grams of a query string and develop a dynamic programming algorithm that selects an optimal combination of variable length grams from a query string. Experimental results show that the proposed technique improves the performance of string similarity search compared with the existing techniques.

Anomaly Detection Performance Analysis of Neural Networks using Soundex Algorithm and N-gram Techniques based on System Calls (시스템 호출 기반의 사운덱스 알고리즘을 이용한 신경망과 N-gram 기법에 대한 이상 탐지 성능 분석)

  • Park, Bong-Goo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.45-56
    • /
    • 2005
  • The weak foundation of the computing environment caused information leakage and hacking to be uncontrollable, Therefore, dynamic control of security threats and real-time reaction to identical or similar types of accidents after intrusion are considered to be important, h one of the solutions to solve the problem, studies on intrusion detection systems are actively being conducted. To improve the anomaly IDS using system calls, this study focuses on neural networks learning using the soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern, That Is, by changing variable length sequential system call data into a fixed iength behavior pattern using the soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm. The backpropagation neural networks technique is applied for anomaly detection of system calls using Sendmail Data of UNM to demonstrate its performance.

  • PDF

Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis

  • Choi, Jeahyuk;Baek, Kwang-Hyun;Moon, Eunpyo
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2014
  • Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as $Ca^{2+}$ and $Mg^{2+}$ inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to $Ca^{2+}$ suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.

Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa

  • Kim, Suhyeon;Kim, Songhee H.;Ahn, Jinsook;Jo, Inseong;Lee, Zee-Won;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.850-857
    • /
    • 2019
  • The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa, has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF-oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.