• Title/Summary/Keyword: variable wind speed turbine system

Search Result 105, Processing Time 0.071 seconds

Performance Limits of Three-Phase Self-Excited Induction Generator (SEIG) as a Stand Alone DER

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.145-150
    • /
    • 2017
  • This paper present a unified method of steady state performance analysis and limits characteristics of an autonomous three-phase self-excited induction generator (SEIG) driven by a wind turbine under different types of loads and speeds. The proposed method is based on a new mathematical function to solve for the real and imaginary components of the complex equation of the mathematical model. Performances limits, regulation and characteristics of different configurations will be thoroughly examined and compared. The proposed system will be modeled and simulated and the performance limits characteristics will be compared with variable speed and variable capacity.

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

Simulation Model of Variable Speed Wind Turbine System Using Matrix Converter (매트릭스 컨버터를 이용한 가변속풍력발전시스템 시뮬레이션 모델 연구)

  • Cha, Han-Ju;Kim, Woo-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.224-226
    • /
    • 2008
  • 본 논문에서는 매트릭스 컨버터를 이용하여 풍력을 에너지원으로한 영구자석형 동기 발전기의 계통연계방법을 제안하고 시뮬레이션으로 타당성을 검증한다. 풍속의 변화에 따라 영구자석형 동기발전기 속도가 변하며, 발전기 속도의 변화로 인해 발전전압의 크기와 주파수가 변한다. 이렇게 가변하는 발전 전압과 주파수를 계통전압의 고정된 전압 크기와 주파수로 변환하는 전력변환장치로써 기존의 PWM AC/DC/AC 컨버터 대신에 매트릭스 컨버터를 사용하여 직접적으로 AC-AC 변환을 한다. 매트릭스 컨버터가 가지고 있는, DC 링크단의 대용량 캐패시터가 필요없고; 양방향전력흐름을 제어할 수 있고, 사용자가 원하는 출력전압의 크기, 주파수, 역률을 임의로 제어 할 수 있는 이점을 사용하여 매트릭스 컨버터를 이용한 영구자석형 동기발전기의 계통연계에 대한 시뮬레이션 결과를 소개한다.

  • PDF

Modeling and Control of Three-Phase Self-Excited Induction Generator Connected to Grid

  • Chandrasekaran, Natarajan;Karthikeyan, A
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • This paper presents the dynamic modeling, analysis, and control of an AC/DC/AC-assisted, self-excited induction generator connected to the grid. The dynamic model includes wind turbine models with pitch control, gear boxes, self-excited induction generators, excitation capacitance, inductive load models, controlled six-pulse rectifiers, and novel state-space models of a grid-connected inverter. The system has been simulated to verify its capabilities of buildup voltage, stator flux response, stator phase current, electromagnetic torque, and magnetizing inductance variation during both the dynamic and steady states with a variable-speed prime mover. The complete setup of the above dynamic models was simulated using MATLAB/SIMULINK.