• Title/Summary/Keyword: variable friction

Search Result 215, Processing Time 0.024 seconds

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

Comparison of semi-active friction control method to reduce transient vibration using SDOF model of truss structure (트러스 구조물의 1 자유도 모형을 이용한 반능동 마찰 제어 방법의 과도 응답 저감 성능 비교)

  • Park, Young-Min;Kim, Kwang-Joon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.59-63
    • /
    • 2011
  • Friction damping is one of the attractive vibration control technique for space structures due to its simplicity and large damping capacity. However, passive approaches for friction damping have a limitation because energy is no longer dissipated at sticking. In order to overcome this problem, semi-active control methods to adjust normal force at frictional interface have been studied in previous researches. In this paper, two semi-active friction control method is compared by simulating SDOF model of truss structure. The first approach is on-off control to maximize rate of energy dissipation, whereas the second concept is variable friction force control to minimize amplitude ratio for each half period. The maximum friction force, control variable in on-off control method, is obtained to minimize 1% settling time, and is different from optimal friction force in passive control. Simulation results show that performance of on-off control is better than that of variable friction force control in terms of settling time and controlled friction force.

  • PDF

Friction Torque Analysis of a Hydraulic Motor-Load System using Proportional Control Valve (비례제어밸브를 이용한 유압모터 부하계의 마찰토크 해석)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.760-766
    • /
    • 2010
  • In this paper, The static friction torque and viscous friction torque including hydraulic motor-load system driven by hydraulic proportional control valve analysis. The basic experimental was performed toward characteristic in pressure and flow rate in hydraulic system energy. The variable of friction torque was experiment on brake pressure variable using pneumatic brake system. The analysis of nonlinear friction and linear friction was perform ed toward friction characteristic of hydraulic system.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

A Study on the Variable Damper System for Vehicle Driveline (차량구동계용 가변 댐퍼시스템에 관한 연구)

  • Park Dong-Hoon;Choi Myung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.837-845
    • /
    • 2004
  • A variable friction damper for vehicle driveline has been proposed. This new torsional damper system uses a solenoid as an actuator to vary friction force of the damper. To verify the idea of using a solenoid in a variable damper system, the test fixture and the dampers are made and tested. Also, to find out the range of damper friction forces that influence the vehicle driveline vibration, a mathematical model of the driveline had been developed and simulated. Test and simulation results show that, within electric current used in the vehicle electric system, the solenoid can develop enough friction force that will surpass resonance in the driveline of 1.5 L Gasoline engine vehicle during acceleration.

Adaptive Variable Structure Control of Container Cranes with Unknown Payload and Friction (미지의 부하와 마찰을 갖는 컨테이너 크레인의 적응 가변구조제어)

  • Baek, Woon-Bo;Lim, Joong-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1008-1013
    • /
    • 2014
  • This paper introduces an adaptive anti-sway tracking control algorithm for container cranes with unknown payloads and friction between the trolley and the rail. If the friction effects in the system can be modeled, there is an improved potential to design controllers that can cancel these effects. The proposed control improves the sway suppressing and the positioning capabilities of the trolley and hoisting against uncertain payload and friction. The variable structure controls are first designed based on a class of feedback linearization methods for the stabilization of the under-actuated sway dynamics. The adaptation mechanism are then designed with parameter estimation of unknown payload and friction compensation for the trolley and hoisting, based on Lyapunov stability methods for the accurate positioning and fast attenuation of trolley oscillation due to frictions in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulations are shown under various frictions and external winds in the case of no priori information of payload mass.

A New Measure of Asset Pricing: Friction-Adjusted Three-Factor Model

  • NURHAYATI, Immas;ENDRI, Endri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.605-613
    • /
    • 2020
  • In unfrictionless markets, one measure of asset pricing is its height of friction. This study develops a three-factor model by loosening the assumptions about stocks without friction, without risk, and perfectly liquid. Friction is used as an indicator of transaction costs to be included in the model as a variable that will reduce individual profits. This approach is used to estimate return, beta and other variable for firms listed on the Indonesian Stock Exchange (IDX). To test the efficacy of friction-adjusted three-factor model, we use intraday data from July 2016 to October 2018. The sample includes all listed firms; intraday data chosen purposively from regular market are sorted by capitalization, which represents each tick size from the biggest to smallest. We run 3,065,835 intraday data of asking price, bid price, and trading price to get proportional quoted half-spread and proportional effective half-spread. We find evidence of adjusted friction on the three-factor model. High/low trading friction will cause a significant/insignificant return difference before and after adjustment. The difference in average beta that reflects market risk is able to explain the existence of trading friction, while the difference between SMB and HML in all observation periods cannot explain returns and the existence of trading friction.

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part I - Shaft Speed Effect (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 I-축 속고영향)

  • Chun, Sang-Myung;Jang, Si-Youl
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.287-292
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of journal bearing at high speed operation.

  • PDF

A Study on Dynamic Analysis and Friction Loss of Swash Plate Compressor (사판식 압축기의 동적 해석 및 마찰손실에 관한 연구)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 1998
  • A dynamic analysis and friction loss of non-variable swash plate compressor are studied theoretically. Rotating swash plate and reciprocating pistons are modelled kinematically, and forces and torques acting on rotor-bearing system are analyzed. Then, friction losses on 4 roller bearings, 10 sliding parts between swash plate and shoes, and 10 lubricating surfaces between cylinders and pistons are calculated. On each frictional element of sliding surfaces and roller bearings, the same friction loss is obtained, respectively.