• Title/Summary/Keyword: variable controlling

Search Result 415, Processing Time 0.031 seconds

Variable Impedance Control and Fuzzy Inference Based Identification of User Intension for Direct Teaching of a Mobile Robot (이동로봇의 직접교시를 위한 가변 임피던스제어와 퍼지추론 기반 사용자 의도 파악)

  • Ko, Jong Hyeon;Bae, Jang Ho;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.647-654
    • /
    • 2016
  • Controlling a mobile robot using conventional control devices requires skill and experience, and is not intuitive, especially in complex environments. For human-mobile robot cooperation, the direct-teaching method with impedance control has been used most frequently in complex environments. This thesis proposes a new direct-teaching method for a mobile robot utilizing variable impedance control. This includes analysis of user intention, which is changed by force and moment. A fuzzy inference technique is proposed in this thesis for identification of user intension. The direct teaching of a mobile robot based on variable impedance control through fuzzy inference is experimentally verified by comparing its efficiency to that of the conventional impedance control-based direct teaching of a mobile robot. Experimental data, such as the total time consumed, path error time, and the total energy used by the user, were recorded. The results showed that the efficiency of variable impedance control was increased.

The Generator Excitation Control Based on the Quasi-sliding Mode Pseudo-variable Structure Control

  • Hu, Jian;Fu, Lijun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1474-1482
    • /
    • 2018
  • As an essential means of generator voltage regulation, excitation control plays an important role in controlling the stability of the power system. Therefore, the reasonable design of an excitation controller can help improve the system stability. In order to raise the robustness of the generator exciting system under outside interference and parametric perturbation and eliminate chattering in the sliding mode control, this paper presents a generator excitation control based on the quasi-sliding mode pseudo-variable structure control. A mathematical model of the synchronous generator is established by selecting its power, speed and voltage deviation as state variables. Then, according to the existing conditions of the quasi-sliding mode, a quasi-sliding mode pseudo-variable structure controller is designed, and the parameters of the controller are obtained with the method of pole configuration. Simulations show that compared with the existing methods, the proposed method is not only useful for accurate voltage regulation, but also beneficial to improving the robustness of the system at a time when perturbance happens in the system.

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

The Relationship between Structural Compensation and Organizational Effectiveness of Distribution Industry

  • PARK, Soyeon;PARK, Hyeyoon
    • Journal of Distribution Science
    • /
    • v.19 no.10
    • /
    • pp.65-74
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the maximum organizational effectiveness of compensation systems in the distribution industry. It is to identify the relationship between structural compensation and organizational effectiveness. It also aims to clarify whether distributive justice plays as a controlling variable between two variables. Research design, data and methodology: This study was conducted on distribution industry employees. The questionnaire was collected through self-subscription. A total of 209 questionnaires were collected during the month of April 2021, of which 203 were used as valid samples. Results: Structural compensation have been shown to have a positive impact on two sub-factors of organizational effectiveness. In the verification of the controlling effect of distributive justice, perceived fairness has a control effect on the relationship between extrinsic compensation and organizational effectiveness but it does not show a controlling effect on the relationship between intrinsic compensation and organizational effectiveness. Conclusions: Structural compensation has a positive effect on organizational effectiveness. The distribution industry should aware of the compensation and the perceived fairness. The fairness of distribution plays a role in identifying the recognition of compensation and organizational feasibility, identifying motivations of employees, and mediating proper strategies to enhance job satisfaction.

An Efficient Scheduling Method based on Dynamic Voltage Scaling for Multiprocessor System (멀티프로세서 시스템을 위한 동적 전압 조절 기반의 효율적인 스케줄링 기법)

  • Noh, Kyung-Woo;Park, Chang-Woo;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.421-428
    • /
    • 2008
  • The DVS(Dynamic Voltage Scaling) technique is the method to reduce the dynamic energy consumption. As using slack times, it extends the execution time of the big load operations by changing the frequency and the voltage of variable voltage processors. Researches, that controlling the energy consumption of the processors and the data transmission among processors by controlling the bandwidth to reduce the energy consumption of the entire system, have been going on. Since operations in multiprocessor systems have the data dependency between processors, however, the DVS techniques devised for single processors are not suitable to improve the energy efficiency of multiprocessor systems. We propose the new scheduling algorithm based on DVS for increasing energy efficiency of multiprocessor systems. The proposed DVS algorithm can improve the energy efficiency of the entire system because it controls frequency and voltages having the data dependency among processors.

Development of Sound Quality for a Vehicle by Controlling CVVT (CVVT 제어를 이용한 차량 음질 개발)

  • Kim, Young-Ki;Cho, Teock-Hyeong;Kim, Jae-Heon;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.622-625
    • /
    • 2007
  • For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, systems for variable valve timing were developed by many automotive researchers. In this work, we investigated the relationship between valve timing and intake orifice noise to improve the NVH (Noise, Vibration and Harshness) performance as well as engine torque and power. Two approaches are conducted, which are engine dynamometer testing and 1-D simulation analysis. Experimental data were measured on about 21 different operating conditions. This experiment shows that the intake and exhaust valve timing related to overlap period influence on the NVH performance, especially intake orifice noise of engine at given range of operation conditions. Similar results are achieved by using 1-D simulation analysis. It is concluded that the optimal strategies of controlling valve timing and tuning intake systems, are necessary to develop engines or vehicles with good sound quality.

  • PDF

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

Microstep Stepper Motor Control Based on FPGA Hardware Implementation

  • Chivapreecha, Sorawat;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.93-97
    • /
    • 2005
  • This paper proposes a design of stepper motor control in microstep driven mode using FPGA (Field Programmable Gate Array) for hardware implementation. The methods to drive stepper motor in microstep excitation mode are to control of the controlling currents in each phase windings of stepper motor with reference signals. These reference signals are used for controlling the current levels, the required variation of current levels with rotor position can be obtained from the ideal linear or sinusoidal approximations to the static torque-displacement ($T-{\theta}$) characteristic curve. In addition, the hardware implementation of stepper motor controller can be designed uses VHDL (Very high speed integrated circuits Hardware Description Language) and synthesis using an Altera FPGA, FLEX10K family, EPF10K20RC240-4 device as target technology and use MAX+PlusII program for overall development. A multi-stack variable-reluctance stepper motor of Sanyo Denki is used in the experiments.

  • PDF

A Study on Method for Improving Reproducibility in the Ultrasonic Measurement of Bone Mineral Density (초음파 골밀도 측정에서 재현성 향상 방법에 관한 연구)

  • Shin, Jeong-Sik;Ahn, Jung-Hwan;Kim, Hwa-Young;Kim, Hyung-Jun;Han, Seung-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1430-1437
    • /
    • 2005
  • It is very important to achieve a high reproducibility in the ultrasonic measurement of bone mineral density. In this study, we examined number of sampling waveform, control of temperature, diameter of region of interest as factors to improve reproducibility. We decided the optimal number of waveforms to be converted to frequency domain as period of 1. We have minimized the effects of variable temperature and constrained generation of micro bubble by keeping temperature within a range of $32\pm0.5^{\circ}C$ with a precise temperature controlling algorithm. We also found the optimal diameter of region of interest to be 13mm. In this paper, we demonstrated the improved reproducibility by controlling various factors affecting the ultrasonic measurement of bone mineral density.

Control of Conductive Plate Through Varying the Open Area Size of the Partially, Magnetically Isolated Electrodyamic Wheel (부분 차폐된 동전기 휠의 개방 영역 크기 조절을 통한 전도성 평판의 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • Shielding the air-gap magnetic field of the electrodynamic wheel below a conductive plate and opening the shielding plate partially, a thrust force and a normal force generate on the conductive plate at the open area. But, as only the variable controlling both forces is a rotating speed of the electrodynamic wheel, it is very difficult to control the forces independently by the speed. So, we discuss a novel method controlling the forces effectively through manipulating a size of the open area. The independent control is made possible by virtue of the feature that the relative ratio between both forces is irrelevant to an air-gap length and determined uniquely for a specific rotating speed of the wheel. Therefore, the rotating speed and the size of open area become new control variables. The feasibility of the method is verified experimentally. Specially, the controllable magnetic forces are used in a noncontact conveyance of the conductive plate.