• Title/Summary/Keyword: vapor pressures

Search Result 141, Processing Time 0.022 seconds

Characterization of Diamond-like Carbon Films Prepared by Magnetron Plasma Chemical Vapor Deposition

  • Soung Young Kim;Jai Sung Lee;Jin Seok Park
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Thin films of diamond-like carbon(DLC) can be successfully deposited by using a magnetron plasma chemical vapor deposition (CVD) method with an rf(13.56 MHz) plasma of $C_dH_8$. Plasma characteristics are analyzed as a function of the magnetic field. As the magnetic field increases, both electron temperature ($T_e$) and density ($n_e$)increase, but the negative dc self-bias voltage (-$V_{ab}$) decreases, irrespective of gas pressures in the range of 1~7 mTorr. High deposition rates have been obtained even at low gas pressures, which may be attributed to the increased mean free path of electrons in the magentron plasma. Effects of rf power and additive gas on the structural properties of DLC films aer also examined by using various technique namely, TED(transmissio electron diffraction) microanalysis, FTIR, and Raman spectroscopies.

  • PDF

A Study on the Effects of System Pressure on Heat and Mass Transfer Rates of an Air Cooler

  • Jung, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.696-702
    • /
    • 2002
  • In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychrometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements.

Solid-Phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition

  • Lee, Jung-Keun
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • The effect of deposition paratmeters on the solid-phase crystallization of amorphous silicon films deposited by plasma-enhanced chemical vapor deposition has been investigated by x-ray diffraction. The amorphous silicon films were prepared on Si(100) wafers using SiH4 gas with and without H2 dilution at the substrate temperatures between 12$^{\circ}C$ and 38$0^{\circ}C$. The R. F. powers and the deposition pressures were also varied. After crystallizing at $600^{\circ}C$ for 24h, the films exhibited (111), (220), and (311) x-ray diffraction peaks. The (111) peak intensity increased as the substrate temperature decreased, and the H dilution suppressed the crystallization. Increasing R.F. powers within the limits of etching level and increasing deposition pressures also have enhanced the peak intensity. The peak intensity was closely related to the deposition rate, which may be an indirect indicator of structural disorder in amorphous silicon films. Our results are consistent with the fact that an increase of the structural disorder I amorphous silicon films enhances the grain size in the crystallized films.

Synthesis of Carbon Nanotubes by Using Inductively Coupled Plasma Chemical Vapor Deposition at Low Temperature

  • Kim, Young-Rae;Jang, In-Goo;Cho, Hyun-Jin;Jeon, Hong-Jun;Cho, Jung-Keun;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.768-771
    • /
    • 2007
  • Carbon nanotubes (CNTs) were synthesized by inductively coupled plasma CVD at $450^{\circ}C$. CNTs were grown on the 1-nm-thick Fe-Ni-Co with $C_2H_2$ and $H_2$ at different pressures and plasma powers. CNTs were grown longer in height as the $H_{\alpha}/CH$ ratios became lower by decreasing plasma powers and increasing growth pressures.

  • PDF

Vaporization of Hydrocarbon Fuel Droplet in High Pressure Environments (고압 환경하에서 탄화수소 연료 액적의 기화특성 연구)

  • Kim, Sung-Yup;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.127-132
    • /
    • 2003
  • A study of high-pressure n-heptane droplet vaporization is conducted with emphasis placed on equilibrium at vapor-liquid interface. General frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. The model is based on complete time-dependent conservation equations with a full account of variable properties and vapor-liquid interfacial thermodynamics. The influences of high-pressure phenomena, including ambient gas solubility, thermodynamic non-ideality, and property variation on the droplet evaporation are investigated. The governing equations and associated moving interfacial boundary conditions are solved numerically using a implicit scheme with the preconditioning method and the dual time integration technique. And a parametric study of entire droplet vaporization history as a function of ambient pressure, temperature has been conducted. Some computational results are compared with Sato's experimental data for the validation of calculations. For low ambient temperatures, the droplet lifetime first increases with pressures, then decreases for high pressures. For higher ambient temperatures, the droplet lifetime increase with less amplitude than that of low ambient temperatures, which then decreases with more amplitude than that of low temperatures. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the pressure goes up.

  • PDF

An Assessment of Reactor Vessel Integrity Under In-Vessel Vapor Explosion Loads

  • Bang, Kwang-Hyun;Cho, Jong-Rae;Park, Soo-Yong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • A safety assessment of reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The core melt relocation parameters were chosen within the ranges of physically realizable bounds. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were peformed using ANSYS code. Then, the calculated strain results and the established failure criteria were used in determining the failure probability of the lower head, In the explosion analyses, it is shown that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations. Strain analyses show that the vapor explosion-induced lower head failure is not possible under the present framework of assessment. The result of static analysis using the conservative explosion-end pressure of 50 MPa also supports the conclusion. It is recommended, however, that an assessment of fracture mechanics for preexisting cracks be also considered to obtain a more concrete conclusion.

  • PDF

Monte Carlo Simulation for Vapor-Liquid Equilibrium of Binary Mixtures CO2/CH3OHCO2/C2 H5OH, and CO2/CH3CH2CH2OH

  • Moon, Sung-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.811-817
    • /
    • 2002
  • Gibbs ensemble Monte Carlo simulations were performed to calculate the vapor-liquid coexistence properties for the binary mixtures $CO_2/CH_3OH$, $CO_2/C_2H_5OH$, and $CO_2/CH_3CH_2CH_2OH.$ The configurational bias Monte Carlo method was used in the simulation of alcohol. Density of the mixture, composition of the mixture, the pressure-composition diagram, and the radial distribution function were calculated at vapor-liquid equilibrium. The composition and the density of both vapor and liquid from simulation agree considerably well with the experimental values over a wide range of pressures. The radial distribution functions in the liquid mixtures show that $CO_2$ molecules interact more stogly with methyl group than methylene group of $C_2H_5OH$ and $CH_3CH_2CH_2OH$ due to the steric effects of the alcohol molecules.

An Experimental Study on Vapor-Liquid Equilibria of HFC and HC Refrigerant Mixtures (탄화수소 및 불화탄화수소 혼합냉매의 기상-액상 평형에 관한 실험적 연구)

  • 강병복;김민수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1031-1037
    • /
    • 2000
  • Isothermal vapor-liquid equilibrium(VLE) data have been obtained for the systems of propane(R290)+1,1,1,2-tetrafluoroethane(R134a) and 1,1,1,2-tetrafluoroethane(R134a)+isobutane(R60A) in the temperature range of 253.15 to 323.15K. Experiments were performed in a circulation type apparatus by injecting vapor through liquid pool using a magnetic pump. Both systems form azeotropes in the temperature range of this study. The experimental results were estimated with the Peng-Robinson equation of state. When the temperature-dependent binary interaction parameter was used in the Peng-Robinson equation of state, the absolute average deviation of the measured bubble point pressures from the values correlated by the Peng-Robinson equation was 0.65% and 0.78% for R290+R134a and R134a+600a, respectively. Azeotropic compositions for both systems were presented.

  • PDF

Estimation of Physical Properties of Natural Gas Using Cubic Equations of State (3차형 상태방정식을 이용한 천연가스의 물성 추산)

  • Cho, Jung-Ho;Cho, Kyu-Sang;Kim, Dong-Hyeok;Lee, Young-Chul;Hong, Sung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.6-10
    • /
    • 2006
  • In this study, gross heating value(GHV), density, vapor pressure and heat capacity of natural gas were estimated and their experimental data were compared with calculated ones, SRK method. A new alpha function was used to predict the vapor pressures of pure component of the natural gas constituents well instead of calculating vapor pressures with acentric factors. And binary adjustable parameters were determined by regressing binary vapor-liquid equilibria data. Through this study, our results showed good agreements with experimental data.

  • PDF

Estimation of Density of Methane and Ethane and Vapor-Liquid Equilibrium Predictions for Methane-Ethane Binary System Using PR and PC-SAFT Equations of State (PR 및 PC-SAFT 상태방정식을 이용한 메탄과 에탄의 기상과 액상의 밀도 추산 및 이성분계의 기-액 상평형 계산)

  • Park, Jong-Kee;Choi, Kun-Hyung;Lee, Sang-Gyu;Yang, Young-Myung;Cho, Jung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.22-26
    • /
    • 2010
  • In this study, experimental vapor pressures and densities of vapor and liquid phases versus temperature were estimated using PC-SAFT equation. The estimated results were compared with those using PR equation of state. For the vapor phase densities, both equations well predicted the literature data. However, PC-SAFT equation showed better prediction capability for liquid phase densities. In the comparison of vapor-liquid equilibrium prediction capability for the binary systems of methane and ethane, PC-SAFT equation was better than the PR equation.