• 제목/요약/키워드: vapor permeable water repellent fabrics

검색결과 11건 처리시간 0.02초

Behavior of Water Vapor Permeability on Layered System

  • Oh, Ae-Gyeong
    • 한국의류산업학회지
    • /
    • 제11권2호
    • /
    • pp.359-362
    • /
    • 2009
  • This study investigates the behavior of water vapor permeability of a layered system to find out a comfortable combination of a layered system for outdoor activities and examines the water vapor permeability of various types of outdoor clothing fabrics. The layered system includes the base layer such as sportswool and polyester/cotton fabrics, the middle layer such as single and double sided fleece fabrics, and the shell layer such as polyurethane-coated, PTFE-laminated and microfiber fabrics in this experiment. Results show that the layered system was applied, it was working together as a whole having some influence on each other layer, though every layer offered varying degree of water vapor permeability. Water vapor permeability of layered system exactly followed the same trend as the shell layer, which is all vapor permeable water repellent fabrics as a single layer. The rate of water vapor transfer through a layered system is mainly related to the type of vapor permeable water repellent fabrics used for the shell layer.

스포츠웨어용 투습발수직물의 마찰음과 관련 역학적 성질 비교 (Frictional Sounds and Its Related Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear)

  • 조길수;박미란
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2003년도 춘계학술대회 논문집
    • /
    • pp.8-13
    • /
    • 2003
  • Frictional sound of 13 vapor permeable water repellent fabric by sound generator were recorded and analysed through FFT analysis. The frictional Sounds were quantified by calculating total sound pressure(LPT), the level range ΔL and the frequency difference Δf. Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of dry coating. Values for bending rigidity, shear stiffness, surface roughness and compressional recovery of polyurethane fabrics increased compared with the cire finished fabrics. Laminated fabrics had high values of frictional coefficient and low values of surface roughness. LPT showed significant correlation with compressional energy, weight and thickness. (ΔL) was highly correlated with compressional linearity, frictional coefficient, compressional recovery, and (Δf) with tensile linearity, compressional energy, thickness, and weight.

  • PDF

PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성 (Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics)

  • 이규린;이지현;진은정;양윤정;조길수
    • 한국의류산업학회지
    • /
    • 제14권4호
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.

위장 날염된 선택 투과성 화생방 직물의 제조 공정연구 및 성능평가 (A Study on Processes and Performance Evaluation for IR Camouflage Printed Selectively Permeable Membrane Fabrics)

  • 정용균;문상현;강재성;서현관;박현배
    • 한국염색가공학회지
    • /
    • 제26권1호
    • /
    • pp.13-21
    • /
    • 2014
  • The object of this research is to perform the basic research for the development of selectively permeable membrane fabrics which is suitable for korean military in sense of embattlement. As a key factor of selectively permeable membrane fabrics which is suitable for korean military, this study selected the best PVA thickness and membrane selection for DMMP protection, pre-treatment method for conformational stability of face fabric and water/oil repellent process condition. Especially as the PVA coating thickness of the fabrics increase, peneration of DMMP decrease including water vapor permeation is lower. This study shows how physical features and permeability of chemical agents can be influenced by pre-treatment methods, the selection of selectively permeable membrane, the thickness of PVA etc. Results showed that outer shell / PVA / e-PTFE materials possessed performance with superior water vapor permeation (Over $3,000g/m^2/day$) and protective capability against DMMP vapor ($0.6{\mu}g/cm^2{\cdot}16hr$).

스포츠웨어용 투습발수직물의 마찰음과 역학적 성질 간의 상관성 (Relationship Between Frictional Sounds and Mechanical Properties of Vapor Permeable Water Repellent Fabrics for Active Wear)

  • 양윤정;박미란;조길수
    • 한국의류산업학회지
    • /
    • 제10권4호
    • /
    • pp.566-571
    • /
    • 2008
  • Frictional sounds of 8 vapor permeable water repellent fabrics by sound generator were recorded and analyzed through FFT fast Fourier transform analysis. The frictional Sounds were quantified by calculating level pressure of total sound(LPT), the level range(${\Delta}L$) and the frequency difference(${\Delta}f$). Mechanical properties were measured by KES-FB. LPT values of specimens finished wet coating were higher than those of other kinds of finishing. ${\Delta}L$ values of specimens laminated were highest. Absolute values of ${\Delta}f$ were high in the cire finished and laminated specimens. Values for bending rigidity, shear stiffness and energy required for the compression of coated specimens increased compared with the cire finished and laminated specimens. Laminated specimens had high values of frictional coefficient and low values of surface roughness. Relationship between frictional sounds and mechanical properties analysed by use of correlation coefficients and stepwise regression. LPT showed significant correlation with elongation, tensile energy, geometrical roughness, weight and thickness. ${\Delta}L$ was highly correlated with tensile linearity, frictional coefficient, and ${\Delta}f$ with tensile linearity, weight and thickness. LPT were revealed to be explained by elongation and weight. ${\Delta}L$were predicted by tensile linearity, and ${\Delta}f$ by tensile linearity and thickness.

스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향 (Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties)

  • 이지현;이규린;진은정;양윤정;조길수
    • 감성과학
    • /
    • 제15권2호
    • /
    • pp.201-208
    • /
    • 2012
  • 본 연구에서는 심한 소음으로 불쾌감을 주는 스포츠웨어용 PTFE 라미네이팅 투습발수 직물 8종을 대상으로 직물 마찰음의 심리음향학적 특성을 고찰하고, 심리음향학적 특성에 영향을 미치는 직물의 기본 특성과 역학적 특성 간의 관계를 파악함으로써, 직물의 심리음향학적 마찰음을 낮출 수 있는 변인을 찾아내고자 하였다. 직물 마찰음 시뮬레이터를 이용하여 녹음한 직물의 소리에서 Zwicker의 파라미터인 심리음향학적 크기(loudness(Z)), 날카로움(sharpness(Z)), 거칠기(roughness(Z)), 그리고 변동강도(fluctuation strength(Z))를 계산한 뒤, 소리특성에 대한 사후검정 결과에 따라 시료를 덜 시끄러운 PTFE 필름 그룹과 더 시끄러운 PTFE 필름 그룹으로 나누어 마찰음의 심리음향학적 특성과 직물의 역학적 특성, 기본특성간의 관계를 고찰하였다. 심리음향학적 특성 중 loudness(Z)만이 시료의 마찰음과 유의한 관계에 있는 것으로 나타났으며, 분석 결과 직물의 기본 특성에서는 layer가 얇고 필라멘트사를 사용한 직물의 마찰음이 덜 시끄럽게 인지되는 것으로 나타났으며, 직물 마찰음의 심리음향학적 크기에 영향을 미치는 주요변수로는 layer로 것으로 나타났다. 마찰음이 작은 PTFE 필름 그룹의 경우 전단 방향으로의 변형이 어려울수록 마찰음이 시끄나타났다. 시끄러운 마찰음을 갖는 PTFE 필름 그룹의 경우 심리음향학적 크기에 영향을 미치는 주요 변수로 전단이력이 설명 변인으로 포함되었다.

  • PDF

투습발수직물과 보온단열소재의 열 및 수분전달 특성 (Thermal and Water Transmission Properties of Vapor Permeable Water Repellent Fabrics and Thermal Insulation Batting Materials)

  • 조길수;최종명;이정주;이선우
    • 한국의류학회지
    • /
    • 제16권2호
    • /
    • pp.237-244
    • /
    • 1992
  • The purpose of this study was to comparatively evaluate thermal and water transmission properties of several vapor permeable water repellent (VPWR) fabrics and synthetic battings that became available in recent years. Five VPWR fabrics evaluated were Hipora in three coating variants, $Gore-Tex^{\circledR}$ and $Aitace^{\circledR}$. Battings evaluated were $Viwarma^{\circledR}$, $Uniwarmr^{\circledR}$, $Thinsulate^{\circledR}$, and $Airseal^{\circledR}$ Thermal resistance and water vapor transmission were measured for each fabric and batting and in all combinations. Thermal resistance at zero and 37 cm/sec air velocity was determined by the Thermo Labo II technique for simultaneously measuring conduction and radiation heat transfer. Water vapor transmission over 24 hours was measured by a modified weight-gain method in a compact humid chamber at conditions simulating the clothing climate under heavy exercise ($40{\pm}1^{\circ}C$, $90{\pm}2\%$ R.H., and 0.5 m/sec air velocity). Fabric porosity was calculated from fiber density and fabric weight, thickness, and area. Thermal resistance results for the fabrics showed the effectiveness of coatings in inhibiting heat transfer. Measurements taken in wind were: $31.1\~37.6\%$ for $Hipora^{\circledR}$ variants; $31.0\%$ for $Gore-Tex^{\circledR}$; and $18.4\%$ for $Aitaca^{\circledR}$ Measurements without wind were higher but in the same order. Water vapor transmission results were in reverse order: $Aitac^{\circledR}$, $8.8 kg/m^{2};\;Gore-Tex^{\circledR}$, 6.4 kg/$m^{2}$; and $Hipora^{\circledR},\;4.4\~6.0\;kg/m^{2}$. In general thermal resistance increased with porosity. For battings, the thermal resistance with wind results were: $Viwarmu^{\circledR}$, $65.0\%;\; Thinsulate^{\circledR}$, $62.0\%$; $Uniwarm^{\circledR}$, $61.0\%$; and $Airseala^{\circledR},\;53.1\%$. Thermal resistance was proportional to thickness. Thermal resistance of fabric-batting combinations were $20\%$ higher than those of the battings only. Water vapor transmission for combinations was mainly affected by that for the VPWR fabric used.

  • PDF

액티브 실버층의 성별과 연령에 따른 건강 쾌적 기능성 소재 의류의 착용 행동 (Wearing Behavior of the Active Silver Generation to Functional Textiles Related with Gender and Age)

  • 박명자;김정민;박재옥
    • 복식문화연구
    • /
    • 제18권6호
    • /
    • pp.1063-1075
    • /
    • 2010
  • Studying awareness, importance, satisfaction, and wearing behavior of functional textiles for active silver generation related with gender and age is expected to contribute to clothing products development to improve and maintain their health and marketing strategy fit for user characteristics. For empirical research, a survey was developed and the aged 50 and above were 332 respondents. The results of the study are as follows. First, silver generation considered all the clothing comfort sensations important when wearing clothes, such as tactile sensation, clothing pressure sensation, thermal/wet sensation, and motion sensation in human physiological aspect. Also, stretchy fabrics were ranked first in awareness, the number of wearing times, and satisfaction of comfort functional fabrics. More than 30% of silver generation have fifteen items out of 36 functional clothes. Second, in analysis of awareness by gender on functional clothing products, women were more aware of health/safety-oriented fabrics than men were. Otherwise, men had more knowledge about the water-related properties of functional fabrics than women have, such as water/moisture absorptive and water-repellent/vapor permeable fabrics. While women have more indoor casual wear, men had more active sportswear. Also, women expressed a strong preference to the stretchy function of fabrics.

투습발수직물과 축열보온섬유를 이용한 스키웨어의 쾌적감 (Comfort Properties of Ski Wear Using Vapor-Permeable Water Repellent Fabrics and Thermal Insulation Battings)

  • 조길수;최종명;이정주;이선우
    • 한국의류학회지
    • /
    • 제16권2호
    • /
    • pp.245-254
    • /
    • 1992
  • The purpose of this study was to evaluate the mechanical thermal resistances and comfort properties of ski wear made with vapor-permeable water repellent (VPWR) fabrics and thermal insulation battings. Four types of experimental clothing were made with the combination of two VPWR fabrics (Hipora-$TM^{\circledR}$, Hipora-$CR^{\circledR}$) and two thermal insulation battings ($Viwarm^{\circledR},\;Airseal^{\circledR}$). Thermal resistances of ski wear were objectly evaluated by thermal manikin experiment ($21{\pm}\;2^{\circ}C,\;50{\pm}5\%$ R.H.,0.25 m/sec air velocity) and thermographic accessment ($2{\pm}2^{\circ}C,\;0\%$ R.H.,0.25 m/sec air velocity, and emissivity level : 1). Garment wear tests of ski wear included the measurement of the microclimate (inner temp. and relative humidity) of the experimental clothing by digital thermohygrometer and subject wear sensation using McNall's thermal comfort ratings. CBo values of experimental clothing 4 (Hipora-$CR^{\circledR}+Airseal^{\circledR}$) and 1 (Hipora-$TM^{\circledR}+Viwarm^{\circledR}$) were significantly higher than those of 2 (Hipora-$TM^{\circledR}+Airseal^{\circledR}$) and 3 (Hipora-$CR^{\circledR}+Viwarm^{\circledR}$). Thermal resistances in the points of breast, back, belly, and loin was significantly higher than those of upper am, fore arm, and shank of measuring points on the thermal manikin. According to the color map of the thermogram, the experimental clothing 4 indicated higher surface temperatures than the others showing more yellowish spots on the surface of clothing. Inner temperature of experimental clothing was not significantly different among the four types of ski wear, but relative humidities of experimental clothing were significantly different. Relative humidities of experimental clothing 1 and 3 showed higher than those of 2 and 4. Relative humidity of experimantal clothing was affected largely by the thermal resis- tance of thermal insulation batting materials. The subject wear sensation of experimental clothing 2 and 4 showed lower humidity than the others. Subject wear sensation was affected more by humidity sensation than by thermal sensation.

  • PDF

Clothing Temperature Changes of Phase Change Material-Treated Warm-up in Cold and Warm Environments

  • Choi Kyeyoun;Chung Hyejin;Lee Boram;Chung Kyunghee;Cho Gilsoo;Park Mikyung;Kim Yonkyu;Watanuki Shigeki
    • Fibers and Polymers
    • /
    • 제6권4호
    • /
    • pp.343-347
    • /
    • 2005
  • The purpose of this study was to investigate the appropriate amounts of phase change materials to give objective and subjective wear sensations. Vapor-permeable water-repellent fabrics with (WR-PCM) and without (WR) octadecane containing microcapsules were obtained by wet-porous coating process. Then, calculating the area of the WR-PCM treated clothes, we estimated the total calories of the clothing by multiplying the heat of fusion and heat of crystallization of PCM to the calculated area. Wear tests were conducted in both warm environment $(30^{\circ}C,\;65\%\;RH)$ and cold environment $(5^{\circ}C,\;65\%\;RH)$ with sports warm up style experimental garments made with WR and WR-PCM fabrics. Rectal, skin, and clothing microclimate temperatures, saliva and subjective evaluation measurements were done during the wear test. There was no difference of rectal and mean skin temperatures between WR and WR-PCM, but the clothing microclimate temperature of WR-PCM under warm environment was slightly lower than that of WR. In cold environment, WR-PCM showed much higher temperature than in WR. Saliva change did not appear between clothes, but did between two environments. Although subjective sensation between WR and WR-PCM was not significantly different, WR-PCM was rated as cooler than WR in warm environment and as warmer than WR in cold environment. The results of this study indicated that octadecane containing microcapsules in water-repellent fabric provide cooling effect.