• Title/Summary/Keyword: van Laar

Search Result 33, Processing Time 0.035 seconds

The Measurement and Estimation of the Lower Flash Points for tert-Pentanol + Propionic Acid and p-Xylene + Propionic Acid Systems Using Open-Cup Apparatus (개방식 장치를 이용한 tert-Pentanol + Propionic Acid 및 p-Xylene + Propionic Acid 계의 하부인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.161-166
    • /
    • 2009
  • The lower flash points for the tert-pentanol + propionic acid and p-xylene + propionic acid systems were measured by Tag open-cup apparatus. The experimental data were compared with the values calculated by the Raoult's law, the van Laar equation and the NRTL equation. The calculated values based on the van Laar and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the van Laar and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for non-ideal solution such as the tert-pentanol + propionic acid and p-xylene + propionic acid systems. The predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the van Laar equation.

The Measurement and Prediction of the Flash Points for the Water+2-Propanol System Using Open-Cup Apparatus (개방식 장치를 이용한 water+2-propanol계의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.48-53
    • /
    • 2007
  • The knowledge of the flash point of the mixtures is very important for prevention and protection of fire in the industrial field. The flash points for the water+2-propanol system were measured by using Tag open-cup apparatus(ASTM D1310-86). The experimental data were compared with the values calculated by the Raoult's law, the Van Laar equation and the NRTL(Non Random Two Liquids) equation. The calculated values based on the Van Laar and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that Van Laar and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for non-ideal solution such as the water+2-propanol system. And the predictive curve of the flash point prediction model based on the Van Law equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the NRTL equation.

The Measurement of Minimum Flash Point Behaviour (MFPB) for Binary Mixtures (이성분계 혼합물의 최소인화점 현상의 측정)

  • Hong, Soon-Kang;Yoon, Myung-O;Lee, Sung-Jin;Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.113-118
    • /
    • 2011
  • The flash point is an important indicator of the flammability of a chemical. The minimum flash point behaviour (MFPB) is exhibited when the flash point of a mixture is below the flash points of the individual components. The identification of this behaviour is critical, because a hazardous situation results from taking the lowest component flash point value as the mixture flash point. In this study, the flash points for the n-butanol + n-decane and n-octane + n-propanol systems which exhibit MFPB, were measured by Tag open-cup apparatus. The experimental data were compared with the alues calculated by the Raoult's law, the van Laar equation and the Wilson equation. The calculated values based on the van Laar and Wilson equations were found to be better than those based on the Raoult's law. It was concluded that the van Laar and Wilson equations were more effective than the Raoult' law at describing the activity coefficients for non-ideal solution such as the n-butanol + n-decane and n-octane + n-propanol systems. The predictive curve of the flash point prediction model based on the Wilson equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the van Laar equation.

The Measurement and Estimation of Lower Flash Point for o-Xylene+n-Pentanol and m-Xylene+n-Hexanol Systems Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 o-Xylene+n-Pentanol 계와 m-Xylene+n-Hexanol 계의 하부인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin;Jeong, Kee-Sin
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.5
    • /
    • pp.19-25
    • /
    • 2010
  • The flash points for the systems, o-xylene+n-pentanol and m-xylene+n-hexanol, were measured by using Tag open-cup tester(ASTM D1310-86). The experimental data were compared with the values calculated by the Raoult's law and the optimization method using van Laar and Wilson equations. The calculated values based on the optimization method were found to be better than those based on the Raoult's law. The predictive curve of the flash point prediction model based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the Wilson equation.

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

Measurement and Prediction of the Lower flash Point for n-Propanol+n-Decane System Using the Tag Open-Cup Apparatus (Tag 개방식 장치를 이용한 n-Propanol+n-Decane 계의 하부인화점 측정 및 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.162-168
    • /
    • 2005
  • The lower flash points for the n-propanol+n-decane flammable mixture were measured by the Tag open-cup apparatus(ASTM D 1310). The experimental results of mixture exhibited the lower flash point than those of pure component in the flash point versus composition curve. The experimental value of the minimum flash point is $27^{\circ}C$ at a mole fraction of n-propanol of 0.71, and the flash point of n-propanol was $28^{\circ}C$. The experimentally obtained data were compared with the values that had been calculated by use of the prediction model, which assumes an ideal solution, and the flash point prediction models based on the van Laar equation were used to estimate the activity coefficients. The predictive curve based on an ideal solution deviated from the experimental data for this system. The experimental results demonstrate a close agreement with the predicted curves, which used the van Laar equation. The average absolute deviation(A.A.D.) from using the van Lau equation is $0.83^{\circ}C$. The methodology proposed here in this paper can thus be applied to incorporate an inherently safer design for chemical processes, such as determining safe storage and handling conditions for flammable solutions.

The Measurement and Estimation of Lower Flash Points for n-Propanol+Acetic acid and n-Propanol+n-Propionic Systems (n-Propanol+acetic acid 및 n-propanol+n-propionic acid 계의 하부 인하점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • Flash points for the flammable binary systems, n-propanol+acetic acid and n-propanol+n-propionic acid, were measured by Cleveland open cup tester. The Raoult's law, the van Laar equation and the UNIQUAC equation were used for predicting flash points and were compared with experimentally-derived data. The calculated values based on the van Laar and UNIQUAC equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model based on the UNIQUAC equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the the van Laar equation.

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

Measurement and Prediction of the Flash Points and the Fire Points for the Flammable Binary Mixtures Using Open-cup Apparatus (개방식 장치를 이용한 가연성 2 성분계 혼합물의 인화점 및 연소점 측정 및 예측)

  • Ha, Doo-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.47-52
    • /
    • 2007
  • The flash points and the fire points for the m-xylene+n-propionic acid and n-butanol+n-pentanol systems were measured by using Tag open-cup apparatus(AS1M D 1310-86). The experimental flash points of two binary systems were compared with the values calculated by the Raoult's law, Van Laar equation and Wilson equation. The calculated values based on the Raoult's law on m-xylene+n-propionic acid system were found to be better than those based on Van Laar and Wilson equations. The calculated values based on Van Laar equation on n-butanol+n-pentanol system were found to be better than those based on the Raoult's law and Wilson equation. The the fire points for the m-xylene+n-propionic acid system were about $7{\sim}8^{\circ}C$ above the flash points. In the case of n-butanol+n-pentanol system, the flash points and the fire points had been found to be identical.

Flash Points of Water+n-Propanol System Using Closed-Cup Measurement Apparatus (밀폐계 측정장치를 이용한 물-노말프로판올 계의 인화점)

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.140-145
    • /
    • 2002
  • The Flash Point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of chemical materials. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the Water + n-Propanol systems were measured by using Pensky-Martens closed cup tester. The experimental data were compared with the values calculated by the laws of Raoult and van laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.