• Title/Summary/Keyword: valve stem seal

Search Result 5, Processing Time 0.019 seconds

Experimental Study on the Oil Leakage Characteristics of Valve Stem System (밸브 스템계의 누유특성에 관한 실험적 연구)

  • 이일권;김청균
    • Tribology and Lubricants
    • /
    • v.20 no.4
    • /
    • pp.204-208
    • /
    • 2004
  • This paper presents the oil leakage characteristics of the valve stem system in gasoline engines. For the oil leakage investigation, four study models have been prepared as functions of used poppet valve and used valve stem seal, used poppet valve and unused valve stem seal, unused poppet valve and used valve stem seal, and unused poppet valve and unused valve stem seal. With four models, the experimental study on the oil leakage has been investigated for the oil temperature, intake pressure, and camshaft speed. The experimental results show that the sealing performance of the valve stem seal plays an important role on the leakage of the valve stem system. And the appropriate replacement of a stem seal with used poppet valve shows good sealing performance in oil leakage in compared with a new valve system.

Surface Roughness Effects of a Valve Stem on the Leakage Characteristics in LPG Automotive (LPG자동차에서 밸브스템 표면거칠기가 누유특성에 미치는 영향에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This paper provides the effects on the leakage characteristics of the surface roughness of a valve stem in LPG automotive. The valve stem seal is to stop an oil leakage through a sealing gap between a valve stem and a valve stem seal. The sealing performance of two components is related to a leak safety and a long life of a valve stem and a valve stem seal. The experimental results show that the optimal surface roughness of a valve stem is to recommend as $0.4{\sim}0.5{\mu}m$ in a centerline average roughness, Ra and a uniformly distributed profile of the roughness. Basically the smooth surface and uniform profiles of the roughness may reduce an oil leakage between a valve stem and a valve stem seal.

  • PDF

Experimental Study on the Tribological Characteristics including of Oil Leakage in Valve Stem

  • Lee, Il-Kwon;Chun, Yoon-Soo;Kim, Sung-Won;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.421-422
    • /
    • 2002
  • The purpose of this paper is to investigate the leakage characteristics of the valve stem in the gasoline engines. Especially, three factors affecting oil leakage are the power cylinder, engine head system, and the positive crankcase ventilation system. Which is the most variables, analysis difficulty is the valve stem seal characteristics. The testing system is used with oil motoring system. The leakage of an engine is analyzed for the cylinder temperature, atmosphere pressure, positive pressure, negative pressure, revolution of the camshaft and the surface roughness of the valve stem.

  • PDF

Experimental Study on the Leakage Characteristics of Stem Seals Depending on the Driving Distance of the LPG Vehicle (LP차량의 주행거리에 따른 스템시일의 누설특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • This paper presents the experimental results on the oil leakage characteristics of stem seals depending on the driving distance in LPG vehicle. The increased speeds of the camshaft and oil temperatures do not affect to the oil leakage of the seals because of the low level of driving distances less than 40,000 km. But the increased driving distance over 50,000 km to 100,000 km shows a rapid deteriorating the sealing performance, which may increase the oil leakage through the rubbing surfaces between the poppet valves and stem seals. In this result, the stem seal may be exchanged about the driving distance of 50,000 km to 60,000 km with a currently used stem seal in LPG car. Thus, the stem seal for a poppet valve should be resigned for the increased durability and long life.

  • PDF

Study on the Fugitive Emissions of a PFA Lined Ball Valve through Helium Leak Detection (PFA 라이닝 볼밸브의 헬륨누설 검출 및 비산배출에 관한 연구)

  • Lee, Won-Ho;Kim, Dong-Yeol;Lee, Jong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.39-42
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used to the chemical/pharmaceutical industries, the semiconductor/LCD manufacturing processes, etc. with the high purity chemicals as working fluid. EPA stated that 60% of all fugitive emissions come from the valve stem packing in a typical petroleum or chemical processing plant. They monitor regulated components for leaks and maintain seal performance at acceptable levels. Korean industrial standards only deals with the bubble test for in-line leakage of valves, which has the detectable leak rate of $10^{-4}$ [$mbar{\cdot}L{\cdot}s^{-1}$], therefore, it is not sufficient to check fugitive emissions. In this study, we conducted Helium leak detection from a PFA lined ball valve and evaluated fugitive emissions according to ISO 15848-1, which has the detectable leak rate of $10^{-9}$ [$mbar{\cdot}L{\cdot}s^{-1}$], for manufacturing the high-reliable PFA lined ball valves against fugitive emissions.