• 제목/요약/키워드: valve Timing

검색결과 186건 처리시간 0.02초

LIVC 적용 밀러사이클 스파크점화기관의 유동특성 연구 (A Study on Flow Characteristics of Spark-Ignited Engine with Variable Intake Valve Closing Timing for Miller Cycle)

  • 정진호;강선제;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2016
  • In this study, to research in-cylinder flow characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle. 3D simulation study were used 6 different intake valve profile with $CAD10^{\circ}$ gap for retard intake valve closing timing. Comparison of In-cylinder flow pattern characteristic were accompanied between Base and LIVC. And the efficiency of volume and the work of compression were analyzed with simulation study. When intake valve closing angle was retarded in $CAD50^{\circ}$, the pressure in cylinder was decreased about 12~13 bar and volume efficiency was reduced about 16%. The efficiency of volume and the work of compression were reduced on LIVC.

흡배기 밸브시기 동시 변경이 SOHC SI 엔진성능에 미치는 영향 (The Effects of Valve Timing Dual Equal Retard/Advance on Performance in an SOHC SI Engine)

  • 엄인용;이원근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.30-36
    • /
    • 2003
  • Variable valve timing(VVT) mechanisms are used widely for improving fuel consumption and reducing emissions. Most of application, however, are limited in the DOHC engine. Dual equal retard/advance strategy is relatively simple one and can be applied to both SOHC and DOHC engines. In this study, effects of dual equal valve timing retard/advance are investigated to observe the feasibility of VVT system on an SOHC SI engine. The result shows that fuel economy and emissions are improved in the dual retard condition due to increased internal EGR. Some amount of increase in volumetric efficiency can be achieved by advancing valve timing at low speed and by retarding at high speed. In this case, however, full load power is not so much improved as the volumetric efficiency increases because of severe knock. In the dual advance condition, there is no merit in the fuel economy and emission.

THEORETICAL FLOW ANALYSIS AND EXPERIMENTAL STUDY ON TIME RESOLVED THC FORMATION WITH RESIDUAL GAS IN A DUAL CVVT ENGINE

  • Myung, C.L.;Kwak, H.;Hwang, I.G.;Park, S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.697-704
    • /
    • 2007
  • Recently, a variable valve timing system has been widely adopted in internal combustion engine in order to improve the fuel economy and torque at low engine speed. In addition, it is known that varying valve timing according to the various engine operations could reduce exhaust gas, especially NOx, because of residual gas by valve overlap. In this study, to improve the low exhaust gas and fuel economy at part load condition, the residual gas and back flow of exhaust gas due to valve overlap were calculated computationally. Moreover, the characteristics of engine performances and NOx formations were investigated with the experiment of combination of intake and exhaust valve timing condition. Under these various valve operating conditions, the effects of both the positive valve overlap and negative valve overlap(valve underlap) were examined simultaneously. Finally, the characteristics of cyclic THC emission were analyzed by using Fast Response FID(FR-FID) in the cylinder, intake port and exhaust port positions. Besides, the effect of the different gradients of the valve timing change on engine performance was investigated and an optimum control strategy was suggested.

체적효율을 고려한 가변밸브 개폐시기의 조정에 의한 실린더내 잔류가스량에 관한 연구 (A Study on the Residual Gas Fraction in Cylinder by the Adjustment of Variable Valve Timing with Volumetric Efficiency)

  • 남정길
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.82-88
    • /
    • 2001
  • The EGR is needed fur one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated. That is a reason why we consider using the internal EGR system. The internal EGR is a system which reduces NOx by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper, characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results, residual gas fraction and volumetric efficiency in cylinder by variable valve timing were visualized.

  • PDF

밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성 (Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period)

  • 이광주;강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.

커먼레일 디젤엔진의 흡배기밸브 타이밍 개선을 통한 연비절감에 대한 수치해석적 연구 (A Numerical Analysis for Fuel Consumption by Improvement of Intake/Exhaust Valve Timing in a Common Rail Diesel Engine for a Generator)

  • 김승철;김청균
    • 에너지공학
    • /
    • 제26권2호
    • /
    • pp.32-38
    • /
    • 2017
  • 본 연구에서 사용되는 발전기용 커먼레일 디젤엔진은 흡 배기 밸브의 작동을 위해 기계적으로 구동되는 캠축을 이용하고 있으며, 차량 운전조건 알맞게 밸브의 개폐시기가 고정되어 있다. 그러나 발전기용 엔진은 회전속도가 일정하고 부분부하에서 운전된다. 따라서, 발전용 커먼레일 디젤엔진의 최적화 설계를 위해 밸브 타이밍의 변화에 따른 디젤연소와 배출가스의 특성을 고찰하여 연비 측면에서 계산하였다. 디젤엔진의 밸브 타이밍은 흡배기 유동을 변화시킴으로서 연소특성에 영향을 주었으며 발전기의 연비 개선이 가능하다고 판단되었다.

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

디젤기관의 내장형 EGR시스템 적용 가능성에 관한 연구 (A Study on the Application of the Built-in EGR System for Diesel Engine)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.398-404
    • /
    • 1999
  • The EGR is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate the intake and exhaust system become complicated. That is a reason why we consider using the built0in EGR system. The built-in EGR is a system which reduces Nox by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results the possibility of suing the built-in EGR system was confirmed.

  • PDF

가변 밸브개폐시기 기구 운전의 엔진 성능에의 영향 (Effects of Variable Valve Timing Operation Modes on Engine Performance)

  • 구준모;배충식
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.24-29
    • /
    • 2001
  • Adaptive valve timing control is one of the promising techniques to accomplish the optimized mixture formation and combustion depending on the load and speed, which is needed to meet the future challenges in reducing fuel consumption and exhaust emissions. The behavior and the effect of adaptive valve timing control system has been investigated by computer simulation, which simulates the gas dynamics in engines. Improved fuel economy can be achieved by reduction of pumping loss under low and mid load conditions. EIVC(Early Intake Valve Closing) strategy turns out to be superior to LIVC(Late Intake Valve Closing) strategy in reducing fuel consumption. Deterioration of combustion quality can be overcome by introducing LIVO(Late Intake Valve Opening) strategy, which increases turbulent intensity in cylinders. Furthermore, LIVO can reduce HC emission by decreasing the required amount of fuel to be injected during cold start.

  • PDF

CVVT 제어를 이용한 차량 음질 개발 (Development of Sound Quality for a Vehicle by Controlling CVVT)

  • 김영기;조덕형;김재헌;강구태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.622-625
    • /
    • 2007
  • For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, systems for variable valve timing were developed by many automotive researchers. In this work, we investigated the relationship between valve timing and intake orifice noise to improve the NVH (Noise, Vibration and Harshness) performance as well as engine torque and power. Two approaches are conducted, which are engine dynamometer testing and 1-D simulation analysis. Experimental data were measured on about 21 different operating conditions. This experiment shows that the intake and exhaust valve timing related to overlap period influence on the NVH performance, especially intake orifice noise of engine at given range of operation conditions. Similar results are achieved by using 1-D simulation analysis. It is concluded that the optimal strategies of controlling valve timing and tuning intake systems, are necessary to develop engines or vehicles with good sound quality.

  • PDF