• Title/Summary/Keyword: value based routing

Search Result 89, Processing Time 0.024 seconds

서비스 산업의 콜 센터 라우팅 룰의 수익성 평가 방법 및 가치 기반 라우팅의 적용 예제 (Evaluation of Call Routing Rules in Call Centers Using Simulation and its Application of Value Based Routing)

  • 공주회;최병규
    • 산업공학
    • /
    • 제22권1호
    • /
    • pp.56-62
    • /
    • 2009
  • This paper presents a methodology of evaluating call routing rules in call centers using simulation. The proposed methodology enables the call centers to reduce trial and error costs from applying different routing rules. Additionally, a Value Based Routing (VBR) has been evaluated with the proposed methodology in terms of profit, and finally compared it with a Homogeneous Routing (HR).

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.

Optimized Resource Allocation for Utility-Based Routing in Ad Hoc and Sensor Networks

  • Li, Yanjun;Shao, Jianji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1790-1806
    • /
    • 2015
  • Utility-based routing is a special type of routing approach using a composite utility metric when making routing decisions in ad hoc and sensor networks. Previous studies on the utility-based routing all use fixed retry limit and a very simple distance related energy model, which makes the utility maximization less efficient and the implementation separated from practice. In this paper, we refine the basic utility model by capturing the correlation of the transmit power, the retry limit, the link reliability and the energy cost. A routing algorithm based on the refined utility model with adaptive transmit power and retry limit allocation is proposed. With this algorithm, packets with different priorities will automatically receive utility-optimal delivery. The design of this algorithm is based on the observation that for a given benefit, there exists a utility-maximum route with optimal transmit power and retry limit allocated to intermediate forwarding nodes. Delivery along the utility-optimal route makes a good balance between the energy cost and the reliability according to the value of the packets. Both centralized algorithm and distributed implementations are discussed. Simulations prove the satisfying performance of the proposed algorithm.

Connection Frequency Buffer Aware Routing Protocol for Delay Tolerant Network

  • Ayub, Qaisar;Mohd Zahid, M. Soperi;Abdullah, Abdul Hanan;Rashid, Sulma
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.649-657
    • /
    • 2013
  • DTN flooding based routing protocol replicate the message copy to increase the delivery like hood that overloads the network resources. The probabilistic routing protocols reduce replication cost by forwarding the message to a node that holds high predictability value to meet its destination. However, the network traffic converges to high probable nodes and produce congestion that triggers the drop of previously stored messages. In this paper, we have proposed a routing protocol called as Connection frequency Buffer Aware Routing Protocol (CFBARP) that uses an adaptive method to maintain the information about the available buffer space at the receiver before message transmission. Furthermore, a frequency based method has been employed to determine the connection recurrence among nodes. The proposed strategy has performed well in terms of reducing message drop, message relay while increases the delivery probability.

An Efficient Routing Scheme Based on Node Density for Underwater Acoustic Sensors Networks

  • Rooh Ullah;Beenish Ayesha Akram;Amna Zafar;Atif Saeed;Sultan H. Almotiri;Mohammed A. Al Ghamdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1390-1411
    • /
    • 2024
  • Underwater Wireless Sensors Networks (UWSNs) are deployed in remotely monitored environment such as water level monitoring, ocean current identification, oil detection, habitat monitoring and numerous military applications. Providing scalable and efficient routing is very challenging in UWSNs due to the harsh underwater environment. The biggest difficulties are the nodes inherent movement due to water current, long delay in data transmission, low bandwidth of the acoustic signal, high error rate and energy scarcity in battery powered nodes. Many routing protocols have been proposed to solve the aforementioned problems. There are three broad categories of routing protocols namely depth based, energy based and vector-based routing. Vector Based Forwarding protocols perform routing through virtual pipeline by defining their radius which give proper direction to packets communication. We proposed a routing protocol termed as Path-Oriented Energy Scaled Expanded Vector Based Forwarding (PESEVBF). PESEVBF takes into account all parameters; holding time, the source nodes packets routing path and void holes creation on the second hop; PESEVBF not only considers the packet upward advancement but also focus on density of the forwarded nodes in terms of number of potential forwarding and suppressed nodes for path selection. Node selection in resultant holding time is based on minimum Path Factor (PF) value. Moreover, the suppressed node will be selected for packet forwarding to avoid the void holes occurrences on the second hop. Performance of PESEVBF is compared with other routing protocols using matrices such as energy consumption, packet delivery ratio, packets dropping ratio and duplicate packets creation indicating considerable performance improvement.

IGP 라우팅 프로토콜의 경로선택 검증을 위한 구현 사례 (The Case Study for Path Selection Verification of IGP Routing Protocol)

  • 김노환
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.197-204
    • /
    • 2014
  • AS(Autonomous System) 안에서 라우터들끼리 라우팅 정보를 주고 받기 위한 내부용 라우팅 프로토콜(IGP : Interior Gateway Protocol)인 RIP, EIGRP, OSPF에 대하여 metric을 이용한 경로선택 방법들이 연구되고 있으나, 학습자들이 이론으로 이해한 내용을 실습을 통해 검증하는 구현 사례는 많지 않았다. 각 라우팅 프로토콜별로 해당 토폴로지에 기반 한 Cost value를 이론적으로 계산하여 Best Path를 결정한 후, 시뮬레이터 상에서 가상망을 구현하여 각 Routing Protocol 별로 경로선택을 검증한 결과와 서로 일치함을 확인하였다. 본 논문에서 제안한 학습방안을 활용하면 라우팅 프로토콜의 경로선택 과정을 체계적으로 이해할 수 있어 우수한 학습 결과를 성취할 수 있을 것으로 기대된다.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

센서 네트워크에서의 RSS(Received Signal Strength)를 이용한 향상된 멀티-홉 라우팅 프로토콜 (Enhanced Multi-Hop Routing Protocol using RSS in Sensor Network)

  • 이민구;강정훈;유준재;윤명현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.206-208
    • /
    • 2005
  • Wireless sensor network's value has increased greatly in recent years in the fields of Ubiquitous Computing that function as solution to reduce both the limitation and collision about RFID Technology. The research for wireless sensor network technology is proceeding with the research for various sensor nodes, powerful routing algorithms, securities for data transmission, and valid applications. This paper suggests that we make the new multi-hop routing algorithm using RSS in order to implement enhanced multi-hop routing algorithm. This paper should demonstrate that the routing algorithm using suggested RSS is superior to routing algorithm based on established BSDV(Destination Sequenced Distance Vector).

  • PDF