• 제목/요약/키워드: vacuum sensitivity

검색결과 178건 처리시간 0.033초

바이오나노 전자 코 (BionanoElectronic Nose)

  • 김경호;오윤광;권오석
    • 진공이야기
    • /
    • 제5권1호
    • /
    • pp.9-12
    • /
    • 2018
  • Electronic nose has been developed for detection of various hazardous molecules, especially vapor organic compounds (VOCs), by adsorption and desorption phenomenon. However, although conventional electronic noses have provided many advantages such as simple detection and high sensitivity, they still need advanced technologies for selective specificity in real samples. In this review, we provide bionanoelectronic noses with natural receptors for selective odorant detection. This review includes from fabrication of natural receptors and conducting nanomaterials to bioelectronic noses. We also discussed their perspective applications for the future at the conclusion.

Thermoelectric Imaging of Epitaxial Graphene

  • 조상희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes, to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high sensitivity imaging of structural disorder on the atomic and nanometre scales. Using this imaging technique, we discovered a defect-mediated dimensional evolution of strain-response patterns in epitaxial graphene with increasing thickness.

  • PDF

Nano scale characterizations of semiconductor materials and devices with SPM

  • Park, Sang-il
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.19-19
    • /
    • 1998
  • Scanning pprobe Microscoppy (SppM) is a ppowerful surface chracterization technology which can measure not only surface toppograpphy but also various ppropperties of the sampple with unpprecedented sensitivity and sppatial resolution. Recent developpment of electrostatic force microscoppe (EFM) and scanning cappacitance microscoppe (SCM) allows us to measure surface ppotential distribution and cappacitance variation n semiconductor devices. The cappacitance image pprovide us valuable information on carrier density and dopping pprofile.

  • PDF

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Quantitative Surface Analysis using Laser Ionisation Mass Spectrometry

  • King, Bruce V.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.167-167
    • /
    • 1999
  • In laser ionisation mass spectrometry (LIMS) atoms and molecules which are desorbed from solid surfaces are ionised by an intense laser beam. The photoions which are created are then mass analysed in a time-of-flight mass spectromenter. In best situations, 10% of the ejected particles can be detected, giving the technique^g , pp b sensitivity. Since the ionisation and desorption steps are separated, matrix effects are minimised, in contrast to competitor techniques like SIMS, so quantitation is improved. The talk will illustrate the application of LIMS to basic studies in sputtering in Sr, Cu3Au(100) and Ni3Al(100) as well as ultratrace analysis of Zr in Si.

  • PDF

나노와이어를 이용한 바이오 소자 응용기술 (Nanowires for bio-device)

  • 최헌진;박정민
    • 진공이야기
    • /
    • 제3권3호
    • /
    • pp.4-9
    • /
    • 2016
  • Nanowires have excellent properties such as high crystallinity, good mechanical properties, quantum confinement effect and high chemical activity, and thus are promising building blocks for many applications. Here we firstly review the fabrication of nanowires by top-down and bottom-up process. We then review nanowires as building blocks for bio applications including bio sensing, cell signaling and cell stimulating. It shows that nanowires are promising for the development of advanced bio technologies that can address ultrahigh sensitivity, and long term cell signaling and stimulating without cell damages.

Measurement of the Particle Current Changes Associated with the Flatness of Deflector Mesh Surface in Particle Beam Mass Spectrometer System

  • Kim, Dongbin;Kim, TaeWan;Jin, Yinhua;Mun, Jihun;Lim, In-Tae;Kim, Ju-Hwang;Kim, Taesung;Kang, Sang-Woo
    • Applied Science and Convergence Technology
    • /
    • 제25권2호
    • /
    • pp.25-27
    • /
    • 2016
  • The surface flatness of metal meshes in a deflector of particle beam mass spectrometer (PBMS) required ideally flat, and this can specify the particle trajectories which goes through the detector. In this research, charged particle current was measured using the different surface roughness deflectors. NaCl particles were generated monodispersed in its size by using differential mobility analyzer and the whole processes were followed the way calibrating PBMS. The results indicate that the mesh surface morphology in the deflector can affect to the particle size and the concentration errors, and sensitivity of PBMS.

한국천문연구원의 진공양자조임 광원 개발 및 EPR 실험 소개 (Status of squeezed vacuum experiment and introduction to EPR)

  • 김창희;이성호;박준규;김윤종;정의정;제순규;성현철;한정열
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • One of the main limitations to the ground- based gravitational-wave (GW) detector sensitivity is quantum noise, which is induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be effective approach to mitigate the quantum noise in the interferometer detector and it is currently used in advanced detectors. However, the current frequency-independent squeezed vacuum cannot reduce quantum radiation pressure noise at low frequencies. A possible solution to reduce quantum noise in the broadband spectrum is the injection of frequency-dependent squeezed (FDS) vacuum. We will report the current status of squeezing experiment at KASI and introduce to the EPR (Einstein-Podolsky-Rosen) entangled state of light, which can realize FDS light without the need for an additional, external cavity.

  • PDF

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF