• Title/Summary/Keyword: vacuum equipment

Search Result 229, Processing Time 0.04 seconds

Analysis of Element distribution and Degradation Characteristics in the grain boundary of ZnO Ceramic Varistors with EPMA (EPMA를 이용한 ZnO 세라믹 바리스터 입계의 원소분포와 열화특성 분석)

  • So, Soon-Jin;Kim, Young-Jin;Park, Young-Soon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.64-67
    • /
    • 2000
  • Element distribution analysis and degradation characteristics of the ZnO varistors fabricated at the ambient sintering-process is investigated in this study. ZnO varistors made of Matsuoka's composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the special electrical-furnace which is equipped with the vacuum system. The Gases of injection at sintering- process were oxygen, air, nitrogen and argon respectively. Element and quantitative analysis in the microstructure of ZnO varistors made use of EPMA equipment. Degradation characteristics were showed by DC degradation tests at $115{\pm}2\;^{\circ}C$ for period up to 13 h. From above analysis, it is found that at the DC degradation test the ZnO varistor sintered in oxygen atmosphere showed the excellent prop properties among them and these results could be explain by element and quantitative analysis in ZnO microstructure.

  • PDF

A Study on the Optimum Design of the Condenser Lens of a Compact Electrostatic-Type SEM (전기장형 소형 주사전자현미경의 집속렌즈의 최적 설계에 대한 연구)

  • Kim, Ki-Hwan;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.270-277
    • /
    • 2015
  • In this paper, we describe the production of a specific electrostatic-type scanning electron microscope based on miniaturization for application in other types of vacuum equipment. The initial configuration of the SEM starts with a minimal configuration that allows people to view sample images. After improving the stability of the SEM operation and resolution, we conducted experiments on identifying the characteristics and development of an einzel-type condenser lens with reference to the demagnification lens system of an SEM. The experiments were conducted at an acceleration voltage of 5 kV and we found the shape of the lens to be more reliable than a conventional lens. The lens was then added to improve the resolution in the nanometer region. The current measured on the sample was approximately 40 pA and its magnification was 4,000 times.

Nondestructive Testing and Applications for Integrity Assessment of Power Plant Facilities by Acoustic Emission Technology - Part 1 : The Theory of Acoustic Emission Technology(I) - (발전설비 건전성평가를 위한 음향방출 비파괴검사 적용기술 - 제1편 : 음향방출 비파괴검사기술 이론(I) -)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.5-13
    • /
    • 2005
  • Acoustic emission(AE) is defined as the transient elastic waves thar are generated by the rapid release of energy. The advantage of AE is that very early crack growth can be detected well before a highly stressed component may fail. At present, an exact diagnosis is the most reliable means for determining the soundness of structures during power plant operations. AE monitoring has been applied successfully in power plants to determine mechanical problems, pressure vessel integrity and external valves leaks, vacuum leaks, the onset of cavitation in pumps and valves, the presence of flow(or no flow) in piping and heat exchange equipment, etc. Acoustic emission(AE) technology has recently strengthened its application base, and practitioners' understanding of the technique's fundamentals. This paper introduces the methods of a survey and assessment on AE monitoring applications in nuclear, fossil and hydraulic power plant. The main objective of this paper was to obtain information on various applications of AE technology in power plant.

  • PDF

Formation of Al2O3 Film by Activated Reactive Evaporation Method (활성화 반응 증발법에 의한 Al2O3 박막 형성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.292-296
    • /
    • 2001
  • In this work, an ultra-high vacuum activated reactive evaporation equipment was built. With reaction of Al and oxygen plasma, $Al_2O_3$ was deposited on the surface of etched Al foil. The chamber was evacuated down to $2{\times}10^{-7}$ torr initially. The Ar and $O_2$ gas introduced into the chamber to maintain $5{\times}10^{-5}$ torr during deposition. Ar gas prevents recombining of the ionized oxygen. Evaporation was maintained by electron beam evaporator continuously. Heating filament and electrode were used in order to generate plasma. The substrate bias of -300V was introduced to accelerate deposition of evaporated Al atoms. The composition and morphology of deposited $Al_2O_3$ films were analyzed by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy (AFM), respectively. The Al oxide was formed on the surface of etched Al foil. According to AFM results, the surface morphology of $Al_2O_3$ film indicates uniform feature. Dielectric characteristic was measured as a function of frequency. Measured withstanding voltage and capacitance were 52V and $24{\mu}F/cm^2$, respectively. The obtained $Al_2O_3$ film shows clean condition without contaminants, which could be adapted to capacitor production.

  • PDF

Thermal Flow Analysis and Design of KSTAR Thermal Shield Panel by Numerical Method (수치해석을 통한 KSTAR 주장치 열차폐 패널 열.유동 특성해석)

  • 김동락;김광선;노영미;조승연;김승현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.73-77
    • /
    • 2002
  • In order to derive the detailed design of Thermal Shield Cryopanel. which plays a role to make the Tokamak Nuclear Fusion Equipment work at both static and efficient conditions the commercially available software package FLUENT Version 5.3, was utilized. This study investigated the effects of thermal sources and distributions on the temperatures of Lid. Body. Base. and EH-Port Cryopanel by the numerical technique whose grid generations cover the solid and 9as region of the panel. The physical model of the Thermal Shield Cryopanel is that the 10mm diameter of the pipe with 1mm thickness is soldered on the Stainless steel Panel with 4mm thickness. The heat fluxes to the panel are assumed to be by thermal radiation in the vacuum space and by conduction through the supporters. The inlet conditions of Helium gas are 20 atmospheric Pressures and 60K temperature. The panel shapes with cooling Pipes and the operational conditions to keep appropriate temperature distribution of Thermal Shield Cryopanel Have been found and suggested.

Leakage-free Rotating Seal Systems with Magnetic Nanofluids and Magnetic Composite Fluids Designed for Various Applications

  • Borbath, Tunde;Bica, Doina;Potencz, Iosif;Borbath, Istvan;Boros, Tibor;Vekas, Ladislau
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. Design concepts and some constructive details of the magnetofluidic seals are discussed in order to obtain high sealing capacity. Different types of magnetofluidic sealing systems and applications are reviewed. Testing procedures and equipment are presented, as well as the sealing capabilities of different types of magnetizable fluids.

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

Corrosion Behavior of Hard Coated Ti-Zr-N Film on the Tool Steels

  • Eun, Sang-Won;Choe, Han-Cheol
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.289-293
    • /
    • 2010
  • To investigate the corrosion behavior of tools steel surface in various coating film, the surface of hard coated Ti-Zr-N film on the tool steel by using magnetron-sputtering methods was researched using various experimental methods. STD 61 steels were manufactured by using vacuum furnace and solutionized for 1hr at $1050^{\circ}C$. Steel surface was coated with Ti-Zr-N film at $150^{\circ}C$ and 100W for 1h by using DC-sputtering equipment. Surface characteristics of Ti-Zr-N film coated specimens were investigated by OM, XRD, FE-SEM and nano-scratch tester. And corrosion behaviors of the coated specimen were investigated by polarization test and electrochemical impedance spectroscopy(EG&G Co, PARSTAT 2273. USA). It was found that Ti-Zr-N film coated sample had a thick coated layer and showed a good wear resistance and corrosion resistance of surface compared with ZrN and TiN coated sample. The corrosion resistance and mechanical property of Ti-Zr-N film coated STD 61 alloy increased as sputtering time increased.

Optimization of three small-scale solar membrane distillation desalination systems

  • Chang, Hsuan;Hung, Chen-Yu;Chang, Cheng-Liang;Cheng, Tung-Wen;Ho, Chii-Dong
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.451-476
    • /
    • 2015
  • Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving the energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum-cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo steady state approach for equipment sizing and the dynamic optimization using overall system mathematical models. The s-SMDDS employing three MD configurations, including the air gap (AGMD), direct contact (DCMD) and vacuum (VMD) types, are optimized. The membrane area of each system is $11.5m^2$. The AGMD system operated for 500 kg/day water production rate gives the lowest unit cost of $5.92/m^3$. The performance ratio and recovery ratio are 0.85 and 4.07%, respectively. For the commercial membrane employed in this study, the increase of membrane mass transfer coefficient up to two times is beneficial for cost reduction and the reduction of membrane heat transfer coefficient only affects the cost of the DCMD system.

Hybrid Superconducting Fault Current Limiters for Distribution Electric Networks (하이브리드 방식을 적용한 배전급 초전도 한류기 개발)

  • Lee, B.W.;Park, K.B.;Sim, J.;Oh, I.S.;Lim, S.W.;Kim, H.R.;Hyun, O.B.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.102-103
    • /
    • 2007
  • In order to apply resistive superconducting fault current limiters into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. Thus, in order to make practical SFCL, we designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for practical applications are in the process.

  • PDF