• Title/Summary/Keyword: utility estimation

Search Result 170, Processing Time 0.029 seconds

An Estimation of the Cost of Children in Korea (우리나라 가계의 자녀양육 비용과 추정방법)

  • Lee, Seong-Lim
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.2
    • /
    • pp.77-90
    • /
    • 2007
  • Using 2004 Household Income & Expenditure Survey, this study investigated difference in consumption pattern among the households with the different number of children, and estimated the monetary cost of rearing children. The findings were as following. First, the major consumption categories for raising children included the expenditures for education, food materials, utility, health, and communication. Second, the potential consumption needs for clothing & foot ware and culture & entertainment were not fully satisfied for the households with children compared to the households without children. Third, in the households with one child, the level of consumption was about two thirds of that in the households without children. It was slightly above half in the households with two children. Lower consumption level of the households with children was mainly due to the burden of the educational expenditure. Forth, the average monthly cost of raising children was estimated by 680 thousands Won for one child, and 104 thousand Won for two children. Lastly, the implications for the fertility policy and the methods for the estimation of the child cost were suggested based on the results.

A Study on Estimation of Distribution Rate of R&8 Input on R&D Output (R&D성과에 대한 R&D투입요소의 분배율 계측에 관한 연구)

  • Lee, Jae-Ha;Chang, Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.129-134
    • /
    • 1997
  • The purpose of this study is to estimate the distribution rate of R&D input on R&D output in major manufacturing industrial sector. The distribution rate is estimated on time-series data for the period 1980 to 1996. The data used in this study can be divided into the two categories. 1) R&D output data (Patent, Utility) 2) R&D input data (R&D expenditure, R&D workers) The raw data of R&D expenditure is transformed into R&D stock. And the specific production function is used to represent the interaction between R&D input and output. The production function shows the maximum rate of R&D output that can be achieved by certain given, technologically possible, R&D input combinations. The main findings can be summarized as follows. 1) There was a diminishing return between R&D input and output$(\alpha+\beta<1). 2) R&D output growth was more affected by R&D expenditures than R&D workers. 3) R&D workers were more contributed highly to Patent granted than Utility model.

  • PDF

Using Choice-Based Conjoint Analysis to Determine Smartphone Choice - a Student's Perspective

  • Baganzi, Ronald;Shin, Geon-Cheol;Wu, Shali
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.93-115
    • /
    • 2017
  • The ability of smartphones to facilitate various services like mobile banking, e-commerce and mobile payments has made them part of consumers' lives. Conjoint analysis (CA) is a marketing research approach used to assess how consumers' preferences for products or services develop. The potential applications of CA are numerous in consumer electronics, banking and insurance services, job selection and workplace loyalty, consumer packaged goods, and travel and tourism. Choice-Based Conjoint (CBC) analysis is the most commonly used CA approach in marketing research. The purpose of this study is to utilise CBC analysis to investigate the relative importance of smartphone attributes that influence consumer smartphone preference. An experiment was designed using Sawtooth CBC Software. 326 students attempted the online survey. Utility values were derived by Hierarchical Bayes (HB) estimation and used to explain consumers' smartphone preferences. All the six attributes used for the study were found to significantly influence smartphone preference. Smartphone brand was the most important, followed by the price, camera, RAM, battery life, and storage. This study is one of the first to use Sawtooth CBC analysis to assess consumer smartphone preference based on the six attributes. We provide implications for the development of new smartphones based on attributes.

Ergonomic Design of Voice Warning Sounds Used in Utility Helicopter (기동헬기 음성 경고음의 인간공학적 설계에 관한 연구)

  • Jung, Jonghyuk;Kim, Taekon;Koh, Jinhwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.189-201
    • /
    • 2013
  • This paper presents an experimental study of the factors modulating the urgency perception of voice alarm generated by concatenative synthesizers. Four experiments were conducted using psycho-physical approach in which 112 participants made magnitude estimation for urgency perception of various voice alarm stimuli. Experiment 1 identified 6 acoustic and non-acoustic factors modulating the perceived urgency of synthesized voice alarm. Experiment 2, 3 and 4 quantified the relations between the objective changes in each of the quantifiable parameters and the subjective changes in urgency perception. This research has implications for the design and implementation of synthesized voice alarm systems where urgency mapping is required.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

Socioeconomic Analysis of Public Forestry Investment(I) - On the Estimation of Social Discount Rate - (공공임업투자(公共林業投資)에 대한 사회경제적(社會經濟的) 분석(分析)(I) - 사회적(社會的) 할인율(割引率)의 추정에 대하여 -)

  • Chang, Cheol Su
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.280-286
    • /
    • 1992
  • When the social cost-benefit analysis is applied for analyzing the public forestry investment, the choice of discount rate to be used in analysis is critical. In this paper, the social discount rate discussed in the public economics was introduced and the social time preference rate as a measure of that was estimated for Korea. The component parameters of the model used are : the elasticity of social marginal utility of consumption and the growth rate of real consumption. The results for the social time preference rate and the elasticity of social marginal utility of consumption are 6.2% and -1.38, respectively, which are plausible and thus can be used as a useful basis in establishing rational resource allocation policies.

  • PDF

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process (쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교)

  • Baek, Jong-Bae;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.564-573
    • /
    • 2014
  • Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.