본 연구는 추천의 정확도 및 다양성을 향상시키기 위해, 가장 널리 사용되는 추천 알고리즘의 하나인 이웃 기반의 협업 필터링(Neighborhood-based Collaborative Filtering) 시스템의 개선방안 제시를 목적으로 한다. 이를 위해서 추천 시스템 사용자의 성향을 파악하고 이와 유사한 성향을 가진 이웃 사용자들 중에서 비교 가능한 선호도 정보가 많을수록 높은 가중치를 부여함으로써 최적의 이웃을 선택할 수 있도록 하였다. 영화 데이터를 이용하여 분석한 결과, 대부분의 경우 기존 시스템보다 더 정확하고 다양한 추천 결과를 얻을 수 있었다. 또한 사용자의 선호도를 여러 항목으로 평가할 경우, 사용자의 선호도 정보가 증가하여 추천 결과의 추가적인 향상을 가져왔다. 마지막으로, 추천의 정확도 및 다양성의 요소를 통합적으로 평가할 수 있는 방안을 제시하였다.
The significant advances in information and communication technologies are changing the process of how information is accessed. The internet is a very important source of information and it influences the development of other media. Furthermore, the growth of digital content is a big problem for academic digital libraries, so that similar tools can be applied in this scope to provide users with access to the information. Given the importance of this, we have reviewed and analyzed several proposals that improve the processes of disseminating information in these university digital libraries and that promote access to information of interest. These proposals manage to adapt a user's access to information according to his or her needs and preferences. As seen in the literature one of the techniques with the best results, is the application of recommender systems. These are tools whose objective is to evaluate and filter the vast amount of digital information that is accessible online in order to help users in their processes of accessing information. In particular, we are focused on the analysis of the fuzzy linguistic recommender systems (i.e., recommender systems that use fuzzy linguistic modeling tools to manage the user's preferences and the uncertainty of the system in a qualitative way). Thus, in this work, we analyzed some proposals based on fuzzy linguistic recommender systems to help researchers, students, and teachers access resources of interest and thus, improve and complement the services provided by academic digital libraries.
추천시스템은 소비자를 대신하여 소비자가 선호할 만한 아이템이나 서비스를 검색하여 구매할 수 있도록 한다. 추천시스템의 추천은 사용자들이 경험하지 않은 아이템들에 대한 선호 예측이기 때문에 완전하게 맞는 답이 도출되는 것은 불가능하다. 따라서 예측에 대한 평가가 수행되어야만 비로소 추천시스템이 정확한지 아닌지를 판단할 수 있다. 그러나 사용자 선호에 대한 예측 정확성만을 높이는 추천은 오히려 사용자의 만족도를 하락시킬 수 있는데 이는 사용자의 취향만을 반영한 편중된 결과로 사용자는 다양한 아이템들로 구성된 추천 결과를 받을 수 없는 필터버블 현상이 야기되기 때문이다. 품질 측정 지표의 다각화가 필요한 이유이고 대표적으로 다양성 지표가 사용된다. 본 논문에서는 추천 결과의 다양성 증대를 위한 3가지 기본 접근방법인 bin packing, weighted random choice, greedy re-ranking을 실제 e-커머스 데이터인 패션 쇼핑몰 데이터에 적용하여 도출된 결과와 F1 score에 기반을 둔 차이를 분석한다.
본 연구는 도서관 상주작가 지원사업 문화프로그램 운영현황을 파악하고 프로그램에 대한 이용자의 인식과 선호, 사서의 인식을 조사하여 도서관 상주작가 문화프로그램의 운영개선 및 활성화 방안을 제시하는데 있다. 이를 위한 연구방법은 이론적 연구와 상주작가 문화프로그램 운영 현황조사, 도서관 이용자의 인식 및 선호에 대한 설문조사, 사서의 인식에 대한 인터뷰조사를 통한 실증적 연구를 병행하였다. 현황조사·설문조사·인터뷰조사는 2021년 5월부터 11월까지의 상주작가 지원사업 문화프로그램을 실시하고 있는 도서관을 대상으로 하였다. 문화프로그램의 어려움은 상주작가의 역량과 코로나로 인한 휴·재개관의 반복과 비대면 수업으로 나타났다. 프로그램 개선방안으로 상주작가와 다른 분야의 문인 초청과 문학프로그램 운영, 온라인 홍보에서 오프라인 홍보의 강화, 문화프로그램 운영의 사전교육, 사업 시작 시기 조정, 작가의 특성을 위한 교육, 이용자 연령을 고려한 진행방식, 이용자 선호프로그램, 프로그램 운영시간, 정기문화프로그램 운영, 지역특성과 프로그램의 다양성 등을 고려해야 할 것이다.
This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.
최근 인터넷 상에 정보가 방대해지면서 사용자의 요구에 맞는 정보 필터링과 개인화 서비스가 매우 중요해지고 있다. 특히 전자상거래 분야에서 상거래를 활성화시키고 정보 제공자에 대한 만족도와 충성도를 높이기 위해, 사용자의 취향을 기반으로 한 정보 추천은 필수적인 요소가 되었다. 기존 추천 시스템은 사용자의 관심 정보를 기술한 사용자 프로파일을 대부분 정보 제공자 측에서 각각 개별적으로 수집하고 이를 기초로 추천 서비스를 제공한다. 따라서 사용자의 정보는 각 정보 제공자 측에 분산되어 존재하며, 사용자 정보가 부족한 서버에서는 초기에 추천 전략을 세우기 어렵다는 문제가 있다. 또한 사용자정보를 가지고 있는 서버의 경우에도 사용자가 해당 서버를 주기적으로 방문하지 않았다면, 사용자의 동적인 취향 변화를 반영하기 어렵다. 따라서 본 논문에서는 사용자의 행동을 통합적이고, 지속적으로 관찰할 수 있는 사용자 기기에서, 사용자가 이용한 웹 문서 분석을 통해 사용자의 관심 분야를 추론하고, 이를 다른 정보 제공자가 이용하는 새로운 구조의 추천 시스템을 제안한다. 또한 제안 시스템은 보다 효율적인 프로파일 생성을 위해, 웹 페이지에서 식별된 정보 블록에서 관심 단어를 추출하고, 앵커 태그를 분석하여 사용자의 이동 경로를 추적하는 특징을 포함하고 있다. 이러한 제안 시스템의 특징을 통해, 사용자 정보가 부족한 상점에서도 초기에 개인화 서비스 제공이 가능해지며, 사용자가 평소에 이용하는 웹 문서로부터 프로파일을 생성함으로써, 사용자의 동적인 취향 변화를 반영할 수 있다. 또한 정보 블록에서 취향 정보를 추출하는 알고리즘을 통해 보다 빠르고 정확한 프로파일 생성이 가능해진다. 본 논문에서는 최근 구매 활동이 있었던 사용자들의 웹 검색 히스토리와 구매 데이터를 이용하여 제안 시스템의 추천 정확도와 프로파일 분석에 소요되는 시간 측면의 이득을 실험하였으며, 그 결과를 통해 시스템의 유효성을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권11호
/
pp.2849-2865
/
2012
In order to block mobile junk messages automatically, many studies on spam filters have applied machine learning algorithms. Most previous research focused only on the accuracy rate of spam filters from the view point of the algorithm used, not on individual user's preferences. In terms of individual taste, the spam filters implemented on a mobile device have the advantage over spam filters on a network node, because it deals with only incoming messages on the users' phone and generates no additional traffic during the filtering process. However, a spam filter on a mobile phone has to consider the consumption of resources, because energy, memory and computing ability are limited. Moreover, as time passes an increasing number of feature words are likely to exhaust mobile resources. In this paper we propose a spam filter model distributed between a users' computer and smart phone. We expect the model to follow personal decision boundaries and use the uniform resources of smart phones. An authorized user's computer takes on the more complex and time consuming jobs, such as feature selection and training, while the smart phone performs only the minimum amount of work for filtering and utilizes the results of the information calculated on the desktop. Our experiments show that the accuracy of our method is more than 95% with Na$\ddot{i}$ve Bayes and Support Vector Machine, and our model that uses uniform memory does not affect other applications that run on the smart phone.
이 연구는 사용자의 브라우징 행위에 따라 자동적으로 하이퍼텍스트 네트워크를 재구성하는 세 가지 학습 규칙을 제안하고, 실험적 시스템을 구현하였다. 시스템은 링크 가중치를 하이퍼링크 네트워크에 부여하고 학습 규칙에 따라 가중치를 변경한다. 학습 규칙은 하이퍼링크가 얼마나 자주 이용되고 있는지에 따라 해당 하이퍼링크의 가중치만 변경되며, 다른 하이퍼링크에는 영향을 미치지 않는다. 네트워크 구조의 변경은 링크 가중치의 내림차순에 따라 동적으로 링크가 배열되어 사용자에게 제시된다. 이것은 협력 필터링 기술의 장점과 탐색 지원 접근 방식을 혼합한 것이다. 실험을 위해 임의적인 하이퍼텍스트 네트워크를 만들고 사용자의 브라우징 선호에 따라 네트워크 구조가 변화되는 과정을 관찰한다.
The current class scheduling has difficulties in reflecting students' preferences for the classes that they want to take and forecasting the demands of classes. Also, it is usually a repetitive and tedious work to allocate classes to limited time and cesourres Although many research studios in task allocation and meeting scheduling intend to solve similar problems, they have limitations to be directly applied to the class-scheduling problem. In this paper. a class scheduling system using multi agents-based negotiation is suggested. This system consists of student agents, professor agents and negotiation agents each agent arts in accordance with its respective human user's preference and performs the repetitive and tedious process instead of the user The suggested system utilizes negotiation cost concept to derive coalition in the agent's negotiation. The negotiation cost is derived from users' bidding prices on classes, where each biding price represents a user's preference on a selected class. The experiments were performed to verify the negotiation model in the scheduling system. The result of the experiment showed that it could produce a feasible scheduling solution minimizing the negotiation cost and reflecting the users' performance. The performance of the experiments was evaluated by a class success ratio.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권11호
/
pp.5344-5356
/
2018
Nowadays with the help of Location-Based Social Networks (LBSNs), users of Point-of-Interest (POI) recommendation service in LBSNs are able to publish their geo-tagged information and physical locations in the form of sign-ups and share their experiences with friends on POI, which can help users to explore new areas and discover new points-of-interest, and promote advertisers to push mobile ads to target users. POI recommendation service in LBSNs is attracting more and more attention from all over the world. Due to the sparsity of users' activity history data set and the aggregation characteristics of sign-in area, conventional recommendation algorithms usually suffer from low accuracy. To address this problem, this paper proposes a new recommendation algorithm based on a novel Preference-Content-Region Model (PCRM). In this new algorithm, three kinds of information, that is, user's preferences, content of the Point-of-Interest and region of the user's activity are considered, helping users obtain ideal recommendation service everywhere. We demonstrate that our algorithm is more effective than existing algorithms through extensive experiments based on an open Eventbrite data set.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.