• 제목/요약/키워드: user's interests

검색결과 170건 처리시간 0.025초

A Step towards User Privacy while Using Location-Based Services

  • Abbas, Fizza;Oh, Heekuck
    • Journal of Information Processing Systems
    • /
    • 제10권4호
    • /
    • pp.618-627
    • /
    • 2014
  • Nowadays mobile users are using a popular service called Location-Based Services (LBS). LBS is very helpful for a mobile user in finding various Point of Interests (POIs) in their vicinity. To get these services, users must provide their personal information, such as user identity or current location, which severely risks the location privacy of the user. Many researchers are developing schemes that enable a user to use these LBS services anonymously, but these approaches have some limitations (i.e., either the privacy prevention mechanism is weak or the cost of the solution is too much). As such, we are presenting a robust scheme for mobile users that allows them to use LBS anonymously. Our scheme involves a client side application that interacts with an untrusted LBS server to find the nearest POI for a service required by a user. The scheme is not only efficient in its approach, but is also very practical with respect to the computations that are done on a client's resource constrained device. With our scheme, not only can a client anonymously use LBS without any use of a trusted third party, but also a server's database is completely secure from the client. We performed experiments by developing and testing an Android-based client side smartphone application to support our argument.

Finding a Needle in a Haystack: Homophily, Communication Structure, and Information Search in an Online User Community

  • Jeongmin Kim;Soyeon Lee;Yujin Han;Dong-Il Jung
    • Asia pacific journal of information systems
    • /
    • 제34권2호
    • /
    • pp.635-660
    • /
    • 2024
  • A growing body of research explores how users of online communities navigate through large-scale platforms to find the information they seek. This study builds on the theories of homophily, structural embeddedness, and social exchange to investigate how interest homophily and existing communication structures serve as mechanisms driving information searches and the subsequent formation of communication networks in these communities. Specifically, we analyze comment-on-post tie formation using network data from "Today's House," the largest online user community specializing in interior design in Korea. Employing the LR-QAP method, a permutation-based hypothesis testing algorithm for social network data, our research identifies that network tie formation is driven by both homophilous information searches based on instrumental and hedonic interests, as well as by structurally induced searches such as preferential attachment, reciprocity, and transitivity. In addition, we investigate the contingent effects of communication structure on homophilous tie formation. Our findings suggest that while network-wide structural characteristics enhance homophilous tie formation based on instrumental interests, local network processes leverage homophily based on hedonic interests. We conclude by discussing the theoretical implications of the differential influence of participation motivations on information search patterns and the practical implications for the design of online communities.

연관규칙과 협업적 필터링을 이용한 상품 추천 시스템 개발 (Development of the Goods Recommendation System using Association Rules and Collaborating Filtering)

  • 김지혜;박두순
    • 컴퓨터교육학회논문지
    • /
    • 제9권1호
    • /
    • pp.71-80
    • /
    • 2006
  • 전자상거래가 급속도로 발전함에 따라 고객들의 행동 패턴을 어떻게 발견하느냐와 웹 마이닝 기술을 사용하는 것에 의해 어떻게 상거래를 지능화 할 것인가에 대한 연구가 진행되고 있다. 현재까지 개인화와 상품 추천 시스템을 만들기 위해 가장 성공적이고 가장 넓게 사용되는 기술은 협업필터링 방법이다. 그러나 협업 필터링 방법은 특정 수 이상의 아이템에 대한 평가가 필요하다는 문제를 가지고 있다. 또한, 기존의 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점을 가지고 있다. 본 논문에서는 개선된 Apriori 알고리즘을 이용하고, 아이템들 간에 상호 관계를 가진 협업 필터링 방법을 사용하여 사용자 성향이 반영된 상품 추천 시스템을 개발하였다.

  • PDF

소셜 네트워크에서 사용자의 관심 분야, 인적 관계 및 응답 품질을 고려한 분야별 전문가 추천 기법 (Expert Recommendation Scheme by Fields Using User's interesting, Human Relations and Response Quality in Social Networks)

  • 송희섭;유승훈;정재윤;박재열;안지환;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.60-69
    • /
    • 2017
  • 최근 인터넷과 스마트 폰의 발달로 사용자들 사이의 관계를 통해 다양한 정보를 생성하고 공유할 수 있는 소셜 미디어 서비스가 활발히 이용되고 있다. 특히 정보의 양이 방대해지고 신뢰할 수 없는 정보가 증가함에 따라 사용자에게 필요한 정보를 제공해 줄 수 있는 전문가 추천 기법에 대한 연구들이 진행되고 있다. 본 논문에서는 사용자의 관심 분야, 인적 관계, 응답 품질을 고려한 전문가 추천 기법을 제안한다. 사용자의 관심 분야는 사용자가 소셜 네트워크상의 활동을 분석해 최신의 사용자의 관심 분야 지수를 판단한다. 사용자의 인적 관계는 소셜 네트워크상의 같은 관심분야의 사용자만을 추출하여 인적 관계를 구축하여 인적 관계 지수를 판단한다. 사용자의 응답 품질은 사용자의 응답 속도와 응답 내용을 고려하여 응답 품질 지수를 판단한다. 마지막으로 사용자의 관심 분야, 인적 관계, 응답 품질을 합하여 사용자의 전문가 지수를 판단하고 사용자의 질의를 분석하여 질의와 전문가 그룹을 매칭하여 전문가를 추천한다. 다양한 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.

User modeling based on fuzzy category and interest for web usage mining

  • Lee, Si-Hun;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.88-93
    • /
    • 2005
  • Web usage mining is a research field for searching potentially useful and valuable information from web log file. Web log file is a simple list of pages that users refer. Therefore, it is not easy to analyze user's current interest field from web log file. This paper presents web usage mining method for finding users' current interest based on fuzzy categories. We consider not only how many times a user visits pages but also when he visits. We describe a user's current interest with a fuzzy interest degree to categories. Based on fuzzy categories and fuzzy interest degrees, we also propose a method to cluster users according to their interests for user modeling. For user clustering, we define a category vector space. Experiments show that our method properly reflects the time factor of users' web visiting as well as the users' visit number.

RFM을 활용한 추천시스템 효율화 연구 (A Study on Improving Efficiency of Recommendation System Using RFM)

  • 정소라;진서훈
    • 대한설비관리학회지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2018
  • User-based collaborative filtering is a method of recommending an item to a user based on the preference of the neighbor users who have similar purchasing history to the target user. User-based collaborative filtering is based on the fact that users are strongly influenced by the opinions of other users with similar interests. Item-based collaborative filtering is a method of recommending an item by comparing the similarity of the user's previously preferred items. In this study, we create a recommendation model using user-based collaborative filtering and item-based collaborative filtering with consumer's consumption data. Collaborative filtering is performed by using RFM (recency, frequency, and monetary) technique with purchasing data to recommend items with high purchase potential. We compared the performance of the recommendation system with the purchase amount and the performance when applying the RFM method. The performance of recommendation system using RFM technique is better.

사용자의 유희적 경험을 중시한 모바일 치매 예방 게임 (Dementia Prevention Game that Focuses on Entertainment Experience)

  • 박서윤;고은비;박시원;이승아;최종인;박수이
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.137-139
    • /
    • 2022
  • 노인들이 가장 두려워하는 질병으로 알려진 치매는 대한민국이 고령사회가 됨에 따라 그 예방의 필요성이 증대되고 있다. 그런데, 치매 예방을 위한 대부분의 현존 게임은 예방이라는 기능성 가치에만 초점이 맞추어져 있다. 따라서 본 연구는 치매 예방에 적합한 60대를 사용자층으로 선정하여, 사용자의 유희적 경험에 중점을 맞춘 모바일 치매 예방 게임을 제안한다. 이를 위해 사용자 관심사 조사 및 관련 문헌 조사를 진행했고, 조사를 토대로 바리스타 직업 체험이라는 주제로 실재감을 적용한 프로토타입을 제작했다. 결과적으로 사용자는 게임을 통해 치매 예방에 효과적인 4가지 인지 능력이 향상됨과 동시에 관심사에 따른 유희적 경험을 기대할 수 있다. 이를 통해 본 연구는 치매 예방을 목표로 하는 60대 사용자가 즐겁게 목표를 달성하는 효과를 기대하는 바이다.

  • PDF

적응형 웹 서핑 지원을 위한 에이전트 시스템 (An Agent System for Supporting Adaptive Web Surfing)

  • 국형준
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.399-406
    • /
    • 2002
  • 본 연구는 웹 서핑 지원을 위한 적응형 사용자 에이전트의 설계를 위해 사용자 데이터 수집, 데이터 처리를 통한 사용자 프로파일 구축 및 개선, 그리고 사용자 프로파일의 적용을 통한 적응 등 세 가지 이슈를 집중 연구하였다. 그 결과 웹 상에서 작동하는 적응형 사용자 에이전트를 위한 기능 정의 및 주요 구성 요소들을 설계하고 세부 모형을 구현하였다. 내부적으로는 두 개의 독립된 에이전트의 협동 체제에 의해 작업 목표를 성취한다. 이들은 각각 IIA(Interactive Interface Agent) 및 UPA(User Profiling Agent)이다. 사용자 인터페이스를 관장하는 IIA는 사용자에게 현재 웹 문서의 대강을 파악하고 나아가서 검색 질의어를 선택할 수 있게 하는 키워드 색인(Keyword Index)과, 계층 구조 방식의 사용자 검색 과정을 나타내는 제안 링크(Suggest Link)를 제공함으로서 사용자 친숙한 인터페이스 환경을 제시한다. UPA는 사용자에 관한 정적 정보와 브라우징 행위에서 나타나는 동적 정보를 사용자 프로파일에 반영한다. 특히, 사용자 관심을 반영하는 관심 벡터(Interest Vector)의 개념을 정립하고 근접도(similarity) 평가에 의해 이들을 갱신하고 추가함으로써 사용자 관심을 동적으로 프로파일링하는 체계를 제시하였다.

Discovering Community Interests Approach to Topic Model with Time Factor and Clustering Methods

  • Ho, Thanh;Thanh, Tran Duy
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.163-177
    • /
    • 2021
  • Many methods of discovering social networking communities or clustering of features are based on the network structure or the content network. This paper proposes a community discovery method based on topic models using a time factor and an unsupervised clustering method. Online community discovery enables organizations and businesses to thoroughly understand the trend in users' interests in their products and services. In addition, an insight into customer experience on social networks is a tremendous competitive advantage in this era of ecommerce and Internet development. The objective of this work is to find clusters (communities) such that each cluster's nodes contain topics and individuals having similarities in the attribute space. In terms of social media analytics, the method seeks communities whose members have similar features. The method is experimented with and evaluated using a Vietnamese corpus of comments and messages collected on social networks and ecommerce sites in various sectors from 2016 to 2019. The experimental results demonstrate the effectiveness of the proposed method over other methods.

사용자 개인 프로파일을 이용한 개인화 검색 기법 (Personalized Search Technique using Users' Personal Profiles)

  • 윤성희
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.587-594
    • /
    • 2019
  • 본 논문은 사용자의 검색 의도와 개별 관심을 반영한 순위화된 검색 결과 문서를 제공하는 개인화 검색 기법을 제안한다. 개인화 검색에서는 사용자의 개별 관심사와 선호도를 정확하게 판별하기 위한 사용자 프로파일을 생성하는 기술이 개인화 검색의 성능을 좌우한다. 개인 프로파일은 사용자의 최근 입력 질의어들과 검색과정에서 참조했던 문서들에 나타나는 주제어들의 가중치와 빈도가 기록된 데이터 집합이다. 사용자 프로파일은 웹 검색에 앞서 사용자의 입력 질의어를 개인화된 질의어들로 확장하기 위해 사용된다. 중의적 질의어의 정확한 의미를 결정하기 위해서 워드넷을 사용하여 프로파일에 등록된 단어들과 의미 유사도를 계산한다. 검색 시스템의 사용자 측에 질의확장 모듈과 순위 재계산 모듈을 확장모듈로 구축하여 진행한 실험에서 개인화 검색 기술을 적용한 실험 결과가 상위문서들에 대해서 정확률과 재현률이 크게 향상된 성능을 보이고 있다.