• 제목/요약/키워드: used nuclear fuel storage

검색결과 85건 처리시간 0.022초

Hydriding Performance in a Uranium Bed depending on the Initial Bed Temperatures and Helium Contents (우라늄 베드 초기온도 및 헬륨농도의 수소 흡장 영향)

  • KOO, DAESEO;KIM, YEANJIN;JUNG, KWANGJIN;YUN, SEI-HUN;CHUNG, HONGSUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제27권2호
    • /
    • pp.163-168
    • /
    • 2016
  • Korea has been developing nuclear fusion fuel storage and delivery system (SDS) technologies including a basic scientific study on hydrogen storage. To develop nuclear fusion technology, it is necessary to store and supply hydrogen isotopes needed for Tokamak operation. SDS is used for storing hydrogen isotopes as a metal hydride form. The rapid hydriding of tritium is very important not only for safety reasons but also for the economic design and operation of the SDS. In this study, we designed and fabricated a medium-scale getter bed of depleted uranium (DU). The hydriding of DU has been measured by varying the initial temperature ($100-300^{\circ}C$) of the DU getter bed to investigate the influence of the cooling temperature. Furthermore, we analyzed the effect of a helium blanket on the hydriding performance with 0 - 12% helium content in hydrogen.

Preliminary Simulation Analysis of the Large Scale Gas Injection Test (LASGIT) Experiment Using the OpenGeoSys (OGS) model

  • Park, Chan-Hee
    • Journal of the Korean earth science society
    • /
    • 제33권5호
    • /
    • pp.401-407
    • /
    • 2012
  • The OGS model is configured and used for simulation of the LASGIT project. The modeling conditions and the simulation results from the previous work by Walsh and Calder (2009) are analyzed to see if the simulation configuration is done correctly and to apply for the LASGIT project. Except for the unrealistic modeling conditions used previously, the simulation results successfully demonstrated helium propagation that is typical for the two-phase flow. The results indicated that the relations of capillary pressure and the relative permeability against water saturation used previously should be updated. An elaborated simulation with more realistic parameters should be used to improve the weak points of preliminary work.

Tritium Fuel Cycle of the International Thermonuclear Experimental Reactor (국제핵융합실험로 삼중수소 연료주기)

  • Song, Kyu-Min;Sohn, Soon Hwan;Chung, Hongsuk;Yun, Sei-Hun;Jung, Ki Jung
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.595-603
    • /
    • 2012
  • International Thermonuclear Experimental Reactor (ITER) will be constructed in 2019 according to the JIA (Joint Implementation Agreement) of 7 countries. The ITER fusion fuel cycle consists of fusion vacuum vessel, tritium plant and fuelling system. The tritium plant provides the functions of storage, delivery, separation, removal and recovery of the deuterium and tritium used as fusion fuels for the ITER. The tritium plant systems supply deuterium and tritium from external sources and treat all tritiated fluids from ITER operation through Storage and Delivery System (SDS), Tokamak Exhaust Processing (TEP), Isotope Separation System (ISS), Water Detritiation System & Atmosphere Detritiation System (WDS & ADS) and Analysis System (ANS). In this paper, the functions and design requirements of the major systems in the tritium plant and the status of R&D are described. Korean party is developing the SDS for ITER tritium plant and partially attaining the WDS technology through the construction and operation experience of the Wolsong Tritium Removal Facility (WTRF). Now it is expected that researchers in other fields such as chemical engineering take part in the development of upcoming technologies for ISS and TEP.

Porous Media Modelling and Verification of Thermal Analysis for Inlet and Outlet Ducts of Spent Fuel Storage Cask (사용후핵연료 저장용기 유로입출구의 다공성매질 모델링 및 열해석 검증평가)

  • Lee, Ju-Chan;Bang, Kyung-Sik;Choi, Woo-Seok;Seo, Ki-Seog;Ko, Sungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제16권2호
    • /
    • pp.223-232
    • /
    • 2018
  • Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.

Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools

  • Eswaran, M.;Reddy, G.R.;Singh, R.K.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.779-799
    • /
    • 2015
  • The slosh height and the possibility of water spill from rectangular Spent Fuel Storage Bays (SFSB) and Tray Loading Bays (TLB) of Nuclear power plant (NPP) are studied during 0.2 g, Safe Shutdown Earthquake (SSE) level of earthquake. The slosh height obtained through Computational Fluid dynamics (CFD) is compared the values given by TID-7024 (Housner 1963) and American concrete institute (ACI) seismic codes. An equivalent amplitude method is used to compute the slosh height through CFD. Numerically computed slosh height for first mode of vibration is found to be in agreement the codal values. The combined effect in longitudinal and lateral directions are studied separately, and found that the slosh height is increased by 24.3% and 38.9% along length and width directions respectively. There is no liquid spillage under SSE level of earthquake data in SFSB and TLB at convective level and at free surface acceleration data. Since seismic design codes do not have guidelines for combined excitations and effect of higher modes for irregular geometries, this CFD procedure can be opted for any geometries to study effect of higher modes and combined three directional excitations.

Phase Behavior of the Ternary NaCl-PuCl3-Pu Molten Salt

  • Toni Karlsson;Cynthia Adkins;Ruchi Gakhar;James Newman;Steven Monk;Stephen Warmann
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제21권1호
    • /
    • pp.55-64
    • /
    • 2023
  • There is a gap in our understanding of the behavior of fused and molten fuel salts containing unavoidable contamination, such as those due to fabrication, handling, or storage. Therefore, this work used calorimetry to investigate the change in liquidus temperature of PuCl3, having an unknown purity and that had been in storage for several decades. Further research was performed by additions of NaCl, making several compositions within the binary system, and summarizing the resulting changes, if any, to the phase diagram. The melting temperature of the PuCl3 was determined to be 746.5℃, approximately 20℃ lower than literature reported values, most likely due to an excess of Pu metal in the PuCl3 either due to the presence of metallic plutonium remaining from incomplete chlorination or due to the solubility of Pu in PuCl3. From the melting temperature, it was determined that the PuCl3 contained between 5.9 to 6.2mol% Pu metal. Analysis of the NaCl-PuCl3 samples showed that using the Pu rich PuCl3 resulted in significant changes to the NaCl-PuCl3 phase diagram. Most notably an unreported phase transition occurring at approximately 406℃ and a new eutectic composition of 52.7mol% NaCl-38.7mol% PuCl3-2.5mol% Pu which melted at 449.3℃. Additionally, an increase in the liquidus temperatures was seen for NaCl rich compositions while lower liquidus temperatures were seen for PuCl3 rich compositions. It can therefore be concluded that changes will occur in the NaCl-PuCl3 binary system when using PuCl3 with excess Pu metal. However, melting temperature analysis can provide valuable insight into the composition of the PuCl3 and therefore the NaCl-PuCl3 system.

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제9권3호
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

Improving Thermal Conductivity of Neutron Absorbing B4C/Al Composites by Introducing cBN Reinforcement (cBN 입자상 강화재 첨가에 따른 중성자 흡수용 B4C/Al 복합재의 열전도도 변화 연구)

  • Minwoo Kang;Donghyun Lee;Tae Gyu Lee;Junghwan Kim;Sang-Bok Lee;Hansang Kwon;Seungchan Cho
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.435-440
    • /
    • 2023
  • This study aimed to enhance the thermal conductivity of B4C/Al composite materials, commonly used in transport/storage containers for spent nuclear fuel, by incorporating both boron carbide (B4C) and cubic boron nitride(cBN) as reinforcing agents in an aluminum (Al) matrix. The composite materials were successfully manufactured through a stir casting process and practical neutron-absorbing materials were obtained by rolling the fabricated composite ingot. The evaluation of the thermal conductivity of the fabricated composites was carried out because thermal conductivity is critical for neutron absorbing materials. The thermal conductivity measurement results indicated an approximately 3% increase in thermal conductivity under the same volume fraction when compared to composite materials using only B4C particles. Through neutron absorption cross-sectional area calculations, it was confirmed that the neutron absorption capability decreased to a negligible level. Based on the findings of this study, new design approaches for neutron absorption materials are proposed, contributing to the development of high-performance transport/storage containers.

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제17권2호
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

Development of New Code Case "Mitigation of PWSCC and CISCC in ASME Code Section III Components by the Advanced Surface Stress Improvement Technology (일차수응력부식균열(PWSCC) 및 염화이온부식균열(CISCC) 저감용 표면개질기술 적용을 위한 코드케이스 개발)

  • Cho, Sungwoo;Pyun, Youngsik;Mohr, Nick;Tatman, Jon;Broussard, John;Collin, Jean;Yi, Wongeun;Oh, Eunjong;Jang, Donghyun;Koo, Gyeong Hoi;Hwang, Seong Sik;Choi, Sun Woong;Hong, Hyun UK
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • 제15권1호
    • /
    • pp.28-32
    • /
    • 2019
  • In nuclear power plant operation and spent fuel canisters, it is necessary to provide a sound technical basis for the safety and security of long-term operation and storage respectively. Recently, the peening technology is being discussed and the technology will be adopted to ASME Section III, Division 1, Subsection NX (2019 Edition). The peening is prohibited in current edition, but it will be approved in 2019 Edition and adopted. However, Surface stress improvement techniques such as the peening is used to mitigate SCC susceptible in operating nuclear plants. Although the peening will be approved to ASME CODE, there are no performance criteria listed in the 2019 edition. The Korean International Working Group (KIWG) formed a new Task Group named "Advanced Surface Stress Improved Technology". The task group will develop a CODE CASE to address PWSCC(Primary Water Stress Corrosion Cracking) and CISCC(Chloride Induced Stress Corrosion Cracking) for new ASME Section III components. TG-ASSIT was started to make peening performance criteria for ASME Section III (new fabrication) applications. The objective of TG-ASSIT is to gain consensus among the relevant Code groups that requirements/mitigation have been met.