• Title/Summary/Keyword: use of observed data

Search Result 1,290, Processing Time 0.032 seconds

Multiparameter CUSUM charts with variable sampling intervals

  • Im, Chang-Do;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.593-599
    • /
    • 2009
  • We consider the problem of using control charts to monitor more than one parameter with emphasis on simultaneously monitoring the mean and variance. The fixed sampling interval (FSI) control charts are modified to use variable sampling interval (VSI) control charts depending on what is being observed from the data. In general, approaches of monitoring the mean and variance simultaneously is to use separate charts for each parameter and a combined chart. In this paper, we use three basic strategies which are separate Shewhart charts for each parameter, a combined Shewhart chart and a combined CUSUM chart. We showed that a combined VSI CUSUM chart is comparatively more efficient than any other chart if the shifts in both mean and variance are small.

  • PDF

Evaluation of Future Climate Change Impact on Streamflow of Gyeongancheon Watershed Using SLURP Hydrological Model

  • Ahn, So-Ra;Ha, Rim;Lee, Yong-Jun;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.45-55
    • /
    • 2008
  • The impact on streamflow and groundwater recharge considering future potential climate and land use change was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for a $260.4km^2$ which has been continuously urbanized during the past couple of decades. The model was calibrated and validated with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.8 to 0.7 and 0.7 to 0.5, respectively. The CCCma CGCM2 data by two SRES (Special Report on Emissions Scenarios) climate change scenarios (A2 and B2) of the IPCC (Intergovemmental Panel on Climate Change) were adopted and the future weather data was downscaled by Delta Change Method using 30 years (1977 - 2006, baseline period) weather data. The future land uses were predicted by CA (Cellular Automata)-Markov technique using the time series land use data of Landsat images. The future land uses showed that the forest and paddy area decreased 10.8 % and 6.2 % respectively while the urban area increased 14.2 %. For the future vegetation cover information, a linear regression between monthly NDVI (Normalized Difference Vegetation Index) from NOAA/AVHRR images and monthly mean temperature using five years (1998 - 2002) data was derived for each land use class. The future highest NDVI value was 0.61 while the current highest NDVI value was 0.52. The model results showed that the future predicted runoff ratio ranged from 46 % to 48 % while the present runoff ratio was 59 %. On the other hand, the impact on runoff ratio by land use change showed about 3 % increase comparing with the present land use condition. The streamflow and groundwater recharge was big decrease in the future.

Application of GWLF Model to Predict Watershed Pollutant Loadings (오염부하량 산정을 위한 GWLF 모형의 적용)

  • Jang, Jung-Seok;Lee, Nam-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.77-88
    • /
    • 2001
  • In order to evaluate the applicability of GWLF model which can efficiently estimate non-point and point source pollutant loadings in rural watershed including urban district, the model was applied to an experimental watershed. The model was calibrated using observed data such as daily runoffs, sediment yields, T-N, and T-P. Simulated daily runoffs and sediment yields by the model using calibrated parameters were in food agreement with the observed data. There were difference between the simulated and observed nutrient loading which was considered resonable. The simulated results by the model showed that T-N, T-P and sediment yields were dependent on the amount of stream runoff discharge and land use. GWLF model is believed to applicable to estimate amount of pollutant loading of non-point source pollution for the water qualify control of agricultural watersheds.

  • PDF

A Study on the Data Transmission of Multiple Sensor Using Code Division Multiple Access (코드분할다중접속을 이용한 다중센서 데이터 전송에 관한 연구)

  • Mun, Se-Sang;Park, Woo-Il;Kim, Woo-Shik;Cho, Hyang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1093-1099
    • /
    • 2006
  • In general, a measuring instrument of sound noise use only one wired channel by one sensor. Therefor the measuring instrument use wired cables as the number of channels are provided by instrument. In a point of observed target it needs data from multiple sensors and In case of measured point is a large numbers the environment of constitution would be complicated because that is in need of channel and cable. So we need the method that can improve the existing transmission channel and cable environment even the measured point is increased. If we use the Code Division Multiple Access(CDMA) we transmit a large numbers of sensor data by using a common transmission channel. We present the method that transmits data of multiple sensor to wireless by using CDMA. This method can simplify the measurement environment dramatically when collecting data by using multiple sensor. We expect this study to contribute the part of multiple access technology and relation technologies on the measuring environment.

A Study on the data transmission of multiple sensor using code division multiple access (코드분할다중접속을 이용한 다중센서 데이터 전송에 관한 연구)

  • Cho, Hyang-Duck;Mun, Se-Sang;Park, Woo-Il;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.133-137
    • /
    • 2006
  • In general, a measuring instrument of sound noise use only one wired channel by one sensor. Therefor the measuring instrument use wired cables as the number of channels are provided by instrument. In a point of observed target it needs data from multiple sensors and In case of measured point is a large numbers the environment of constitution would be complicated because that is in need of channel and cable. So we need the method that can improve the existing transmission channel and cable environment even the measured point is increased. If we use the Code Division Multiple Access(CDMA) we transmit a large numbers of sensor data by using a common transmission channel. We present the method that transmits data of multiple sensor to wireless by using CDMA. This method can simplify the measurement environment dramatically when collecting data by using multiple sensor. We expect this study to contribute the part of multiple access technology and relation technologies on the measuring environment.

  • PDF

Study on Heat Environment Changes in Seoul Metropolitan Area Using WRF-UCM: A Comparison between 2000 and 2009 (WRF-UCM을 활용한 수도권 지역의 열환경 변화 연구: 2000년과 2009년의 비교)

  • Lee, Bo-Ra;Lee, Dae-Geun;Nam, Kyung-Yeub;Lee, Yong-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.483-499
    • /
    • 2015
  • This study examined the impact of change of land-use and meteorological condition due to urbanization on heat environment in Seoul metropolitan area over a decade (2000 and 2009) using Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM). The numerical simulations consist of three sets: meteorological conditions of (1) October 2000 with land-use data in 2000 (base simulation), (2) October 2009 with land-use data in 2000 (meteorological condition change effect) and (3) October 2009 with land-use data in 2009 (both the effects of land-use and meteorological condition change). According to the experiment results, the change of land-use and meteorological condition by urbanization over a decade showed different contribution to the change of heat environment in Seoul metropolitan area. There was about $1^{\circ}C$ increase in near-surface (2 m) temperature over all of the analyzed stations due to meteorological condition change. In stations where the land-use type changed into urban, large temperature increase at nighttime was observed by combined effects of meteorological condition and land-use changes (maximum $4.23^{\circ}C$). Urban heat island (UHI) over $3^{\circ}C$ (temperature difference between Seoul and Okcheon) increased 5.24% due to the meteorological condition change and 26.61% due to the land-use change. That is, land-use change turned out to be contributing to the strengthening of UHI more than the meteorological condition change. Moreover, the land-use change plays a major role in the increase of sensible heat flux and decrease of latent heat flux.

Flood Runoff Analysis for Agricultural Small Watershed Using HEC-HMS Model and HEC-GeoHMS Module (HEC-HMS 모형과 HEC-GeoHMS 모듈을 이용한 농업소유역의 홍수유출 해석)

  • 김상민;성충현;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.119-127
    • /
    • 2003
  • This paper documents recent efforts to validate the GIS-based hydrologic models, HEC-HMS and HEC-GeoHMS by the US Army Corps of Engineers. HMS and Geo-HMS were used to simulate storm runoff from a small rural watershed, the Balan HS#6. The watershed is 3.85 $\textrm{km}^2$ in size. The watershed topographic, soils, and land use data were processed using the GIS tool fur the models. Input parameters were retrieved and calibrated with the field data. The simulated peak runoff, time to peak, and total direct runoff fer twenty three storms were compared with the observed data. The results showed that the coefficient of determination($R^2$) for the observed peak runoff was 0.95 and an error, RMSE, 3.08 $\textrm{m}^3$/s for calibration stages. In the model verifications, $R^2$ was 0.89 and RMSE 6.79 $\textrm{m}^3$/s, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well compared to the observed. It was concluded that HMS and GeoHMS are applicable to flood analyses for rural watersheds.

A Development on Reliability Data Integration Program (신뢰도 데이터 합성 program의 개발)

  • Rhie, Kwang-Won;Park, Moon-Hi;Oh, Shin-Kyu;Han, Jeong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.164-168
    • /
    • 2003
  • Bayes theorem, suggested by the British Mathematician Bayes (18th century), enables the prior estimate of the probability of an event under the condition given by a specific This theorem has been frequently used to revise the failure probability of a component or system. 2-Stage Bayesian procedure was firstly published by Shultis et al. (1981) and Kaplan (1983), and was further developed based on the studies of Hora & Iman (1990) Papazpgolou et al., Porn(1993). For a small observed failure number (below 12), the estimated reliability of a system or component is not reliable. In the case in which the reliability data of the corresponding system or component can be found in a generic reliability reference book, however, a reliable estimation of the failure probability can be realized by using Bayes theorem, which jointly makes use of the observed data (specific data) and the data found in reference book (generic data).

Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed (농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영)

  • 권명준;권순국;홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.

A Study on the Water Quality Prediction in Rural Watershed Using SWAT-WASP Model (SWAT-WASP 모형을 이용한 농촌유역의 수질예측에 관한 연구)

  • 권명준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.708-714
    • /
    • 1999
  • For the assessment of the level of stream pollution, SWAT-WASP model linked with GIS was applied to a respresentative rural watershed and evaluated for its applicability through calibration and verfication using observed data. Using daily water yields, sediment yields and nutrient discharge simulated by SWAT model, WASP input file was build. Point source pollutant and water quality change in stream was considered in WASP model. For the model applicatiion , digital maps were constructed for watershed boundary, ladn-use , soil series , digital elevation, and topographic data of Bok-Ha watershed using GRASS. The model application results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model.

  • PDF