• Title/Summary/Keyword: urine volume

Search Result 273, Processing Time 0.023 seconds

Investigation on Characteristics of Swine Manure of Optimum Volume for Escalator Reversing Composting Facility (돼지분뇨 특성에 따른 기계교반 퇴비화시설의 적정용적 산정 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Yoo, Y.H.;Youn, C.K.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.105-112
    • /
    • 2008
  • This study was carried out to investigate evaporation rate of moisture per surface area and degradation rate of organic matter in full scale escalator reversing composting facility were analyzed to develope a computer program for the computation of an optimum volume of composting facility according to handling methods of swine farm, moisture levels of manure, degradation rate of organics and evaporation rate of moisture during composting. The obtained results can be followed as bellow; The temperature in full scale escalator reversing composting facility during composting reached $70^{\circ}C$ in 4 days and maintained until 11 days. Reduction rate of moisture and density was average 1.20% and 29.7%, respectively. Annual degradation rate of organic matter was 3.53%, showing lowest rate in winter as 3.23%. These seasonal degradation rate could be a factor to be considered for proper management and installation of composting facility. When computed with the amount of feces, urine, slurry and manure plus wastewater produced, the optimum volumes of composting facility for slurry and manure plus wastewater including each 95% moisture was $229m^3$ and $277m^3$, respectively, showing 21% ($48m^3$) difference.

  • PDF

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

The Comparative Study of on Pump CABG during Pulsatile $(T-PLS^{TM})$ and Nonpulsatile $(Bio-pump^{TM})$ Perfusion (관상동맥우회술 시 사용된 박동성펌프$(T-PLS^{TM})$와 비박동성펌프$(Bio-pump^{TM})$의 비교연구)

  • Park Young-Woo;Her Keun;Lim Jae-Ung;Shin Hwa-Kyun;Won Yong-Soon
    • Journal of Chest Surgery
    • /
    • v.39 no.5 s.262
    • /
    • pp.354-358
    • /
    • 2006
  • Background: Pulsatile pumps for extracorporeal circulation have been known to be better for tissue perfusion than non-pulsatile pumps but be detrimental to blood corpuscles. This study is intended to examine the risks and benefits of $T-PLS^{TM}$ through the comparison of clinical effects of $T-PLS^{TM}$ (pulsatile pump) and $Bio-pump^{TM}$ (non-pulsatile pump) used for coronary bypass surgery. Material and Method: The comparison was made on 40 patients who had coronary bypass using $T-PLS^{TM}\;and\;Bio-pump^{TM}$ (20 patients for each) from April 2003 to June 2005. All of the surgeries were operated on pump beating coronary artery bypass graft using cardiopulmonary extra-corporeal circulation. Risk factors before surgery and the condition during surgery and the results were compared. Result: There was no significant difference in age, gender ratio, and risk factors before surgery such as history of diabetes, hypertension, smoking, obstructive pulmonary disease, coronary infarction, and renal failure between the two groups. Surgery duration, hours of heart-lung machine operation, used shunt and grafted coronary branch were little different between the two groups. The two groups had a similar level of systolic arterial pressure, diastolic arterial pressure and mean arterial pressure, but pulse pressure was measured higher in the group with $T-PLS^{TM}\;(46{\pm}15\;mmHg\;in\;T-PLS^{TM}\;vs\;35{\pm}13\;mmHg\;in\;Bio-pump^{TM},\;p<0.05)$. The $T-PLS^{TM}$-operated patients tended to produce more urine volume during surgery, but the difference was not statistically significant $(9.7{\pm}3.9\;cc/min\;in\;T-PLS^{TM}\;vs\;8.9{\pm}3.6\;cc/min\;in\;Bio-pump^{TM},\;p=0.20)$. There was no significant difference in mean duration of respirator usage and 24-hour blood loss after surgery between the two groups. Plasma free Hb was measured lower in the group with $T-PLS^{TM}\;(24.5{\pm}21.7\;mg/dL\;in\;T-PLS^{TM}\;versus\;46.8{\pm}23.0mg/dL\;in\;Bio-pump^{TM},\;p<0.05)$. There was no significant difference in coronary infarction, arrhythmia, renal failure and morbidity rate of cerebrovascular disease. There was a case of death after surgery (death rate of 5%) in the group tested with $T-PLS^{TM}$, but the death rate was not statistically significant. Conclusion: Coronary bypass was operated with $T-PLS^{TM}$ (Pulsatile flow pump) using a heart-lung machine. There was no unexpected event caused by mechanical error during surgery, and the clinical process of the surgery was the same as the surgery for which $Bio-pump^{TM}$ was used. In addition, $T-PLS^{TM}$ used surgery was found to be less detrimental to blood corpuscles than the pulsatile flow has been known to be. Authors of this study could confirm the safety of $T-PLS^{TM}$.