• Title/Summary/Keyword: urinary metabolites

Search Result 143, Processing Time 0.027 seconds

APPLICATION OF METABOLITE PROFILE KINETICS FOR EXPOSURE AND RISK ASSESSMENT

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.34-45
    • /
    • 2006
  • Chemical toxicants are metabolically converted to numerous metabolites in the body. Toxicokinetic characteristics of metabolites could be therefore used as biomarker of exposure for human risk assessment. Biologically based dose response (BBDR) model was proposed for future direction of risk assessment. However, this area has not been developed well enough for human application. Benzo(a)pyrene (BP), for example, is a well-known environmental carcinogen and may produce more than 100 metabolites and BPDE-DNA adduct, a covalently bound form of DNA with benzo(a)pyrene diolepoxides (BPDES), has been applied to qualitatively or quantitaively estimate human exposure to BP. In addition, di(2-ethylhexyl) phthalate (DEHP), a widely used plasticize. in the polymer industry, is one of endocrine-disrupting chemicals (EDCs) and has been monitored in humans using urinary or serum concentrations of DEHP or its monomer MEHP for exposure and risk assessment. However, it is difficult to estimate the actual level of toxicants using these biomarkers in humans using. This presentation will discuss a methodology of exposure and risk assessment by application of metabolic profiling kinetics.

  • PDF

Urinary Excretion of Triprolidine in Human (인체 뇨에서의 트리프로리딘 배설)

  • 정병화;엄기동;정봉철;박종세
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.143-150
    • /
    • 1993
  • The metabolic profile of triprolidine, 2-[(4-methylphenyl)-3-(1-pyrrolidinyl-1-propenyl)] pyridine, was determined. Urinary extracts obtained with enzyme hydrolysis were derivatized with MSTFA/TMSCl (N-methyl-N-trimethylsilyl trifluoroacetamide/trimethylchlorosilane) and analyzed by GC/MSD. In human urine, which were obtained after the oral administration with triprolidine, hydroxymethyltriprolidine, triprolidine carboxylic acid, oxotriprolidine carboxylic acid and unchanged triprolidine were detected. The maximum urinary excretion rate of triprolidine and hydroxymethyltriprolidine which were extracted from human urine was at 2 to 4 hours after the drug administration. Triprolidine and hydroxymethyl triprolidine were identified by comparison with authentic standards In chromatographic and mass spectral properties. Triprolidine carboxylic acid was detected as a major metabolite of its metabolites in the urine. Oxotriprolidine carboxylic acid and triprolidine carboxylic acid were tentatively identified by the interpretation of its mass spectral patterns. These data suggest that in human, hydroxylation of either the benzyl or pyrrolidine ring can occur during triprolidine elimination.

  • PDF

Evaluation of the Suitability of Establishing Biological Exposure Indices of Styrene

  • Choi, Ah-rum;Im, Sung-guk;Lee, Mi-young;Lee, Se-Hoon
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.103-108
    • /
    • 2019
  • Background: This study was designed to provide logical backgrounds for the revision of biological exposure indices (BEIs) for styrene exposure in Korea. In order to investigate the correlation between airborne styrene and biological exposure indices, we measured urinary mandelic acid (MA) and phenylglyoxylic acid (PGA) in workers exposed to styrene occupationally, as well as airborne styrene at workplaces. Methods: Surveys were conducted for 56 subjects. The concentrations of airborne styrene and urinary metabolites of styrene were measured in 36 workers who were occupationally exposed to styrene, and in 20 controls. Air samples were collected using personal air samplers and analyzed by gas chromatography. Urine samples were collected at the end of the shift and analyzed by high performance liquid chromatography. Results: The geometric mean concentration of airborne styrene was 9.6 ppm. The concentrations of urinary MA, PGA, and MA+PGA in the exposure group were 267.7, 143.3, and 416.8 mg/g creatinine, respectively. The correlation coefficients for correlation between airborne styrene and MA, PGA, and MA+PGA were 0.714, 0.604, and 0.769, respectively. The sum of urinary MA and PGA corresponding to an exposure of 20 ppm styrene was 603 mg/g creatinine. Conclusion: The correlation of the sum of urinary MA and PGA with airborne styrene was better than the correlation of each individual urinary determinant. It is considered appropriate to amend the concentration of urinary MA+PGA to 600 mg/g creatinine as a BEI, which corresponds to an airborne styrene concentration of 20 ppm in Korea.

Comparative analysis of urinary metabolites in methamphetamine self-administrated rats

  • Choi, Boyeon;Kim, Soo Phil;Jang, Choon-Gon;Yang, Chae Ha;Lee, Sooyeun
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.122-129
    • /
    • 2017
  • Methamphetamine addiction is a critical issue due to the lack of effective pharmacotherapy and high potential for relapse. Nevertheless, there are no distinct biomarkers for diagnosis or prognosis for methamphetamine addiction. In the present study, a rat model for methamphetamine self-administration was established and alteration of urinary metabolites by methamphetamine addiction was investigated by the targeted metabolite analysis using mass spectrometry. Rat urine samples were collected at three time points (before and after addiction and after extinction) from the methamphetamine-addicted group as well as the age-matched control group. The collected samples were prepared using AbsoluteIDQ p180 kit and analyzed using flow injection analysis (FIA) - or high performance liquid chromatography (HPLC) - tandem mass spectrometry (MS/MS). The levels of lysine, acetylornithine and methioninesulfoxide were distinctively altered depending on the status of metheamphetamine addiction or extinction. In particular, the level of acetylornithine was reversely changed from addiction to extinction, for which further studies could be useful for biomarker discovery or mechanistic studies for methamphetamine addiction.

Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

  • Park, Myung Hee;Igarashi, Kazuei
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.

Correlation between Steroid Hormone Metabolites and Leiomyomas of Uterus (자궁근종과 성호르몬 대사물과의 연관성)

  • Bai, Sang-Wook;Jung, Byung-Hwa;Chung, Bong-Chul;Jeon, Jin-Dong;Lee, Hyun-Jung;Kwon, Han-Sung;Chung, Kyung-Ah;Kim, Sei-Kwang;Park, Ki-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.4
    • /
    • pp.279-286
    • /
    • 2001
  • Objective: To elucidate 1) whether there are any differences in the urine concentrations of steroid hormone metabolites between patients with leiomyoma and normal controls 2) the correlation between urinary profiles of steroid hormones and leiomyomas of the uterus according to their type, location, volume, and weight. Materials of Methods : The study population consisted of 37 premenopausal patients with uterine leiomyoma and the control group consisted of 25 premenopausal normal volunteer women without uterine leiomyoma. Confirmation of the existence of uterine leiomyoma was done by ultrasonography and histopathological examination after surgery. The volume of the leiomyoma was estimated by trans-abdominal and/or trans-vaginal ultrasonography. The Leiomyomas were divided into 3 types (subserosal, intramural and submucosal). Seventeen patients had subserosal type of leiomyoma, 10 with the intramural type and 10 with the submucosal type. The locations of the leiomyoma were also divided into 3 groups (fundus, body and isthmus). Seventeen patients showed a fundus location, 10 in body, and 10 in isthmus. We compared urinary profiles of the endogenous steroids between patients with leiomyomas and normal controls, and also investigated the relationship between urinary profiles of the endogenous steroids and leiomyomas according to their type, location, volume and weight by using highly sensitive Gas Chromatography-Mass Spectrometry (GC-MS) system. Results: The mean ages of the patients with leiomyomas and the control group were $43.1{\pm}5.6$ and $40.6{\pm}7.2$ years, the weights were $63.4{\pm}7.3$ and $59.4{\pm}8.1\;kg$, and their heights were $155.4{\pm}4.8$ and $159.3{\pm}4.8\;cm$ respectively. Seventeen patients had subserosal, 10 had intramural, and 10 had submucosal leiomyomas. There were 17 patients with leiomyoma located in fundus, 10 in body and 10 in isthmus. $17{\beta}$-estradiol, 5-AT, 11-keto ET, $11{\beta}$-hydroxy An, $11{\beta}$-hydroxy Et, THS, THA, THE, a-cortolone, a-cortol, $\beta$-cortol, $11{\beta}$-OH Et/$11{\beta}$-OH An and E2/E1 were significantly increased in patients with leiomyoma than in the control group. $17{\beta}$-estradiol was significantly increased in the intramural and the submucosal types than in the subserosal type. There was no significant difference in the concentrations of urinary steroids according to the locations of leiomyomas. There was no significant relationship between the concentration of urinary steroids and the volume of the leiomyomas. $17{\beta}$-estradiol significantly decreased as the weight of uterus increased (r=-0.322, p=0.04). Conclusion: The concentrations of steroid hormone metabolites were generally increased in patients with leiomyoma but were not significantly related to the volume and weight of the leiomyomas. Our study suggests that steroid hormones may be involved in the initiation of leiomyomas but may not be involved in their progression. In addition, the concentrations of steroid hormone metabolites are not related to the leiomyoma type and location.

  • PDF

Exposure Level to Organophosphate and Pyrethroid Pesticides and Related Agricultural Factors in Chili and Cucumber Cultivation among Greenhouse and Orchard Farmers (시설 고추와 오이, 과수 재배 농업인의 유기인계 및 피레스로이드 살충제 노출 수준과 관련 농작업 특성)

  • Kim, Shinah;Roh, Sangchul
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.280-297
    • /
    • 2017
  • Objectives: We assessed pesticide exposure levels according to cultivation and crop type and investigated agricultural factors related to exposure. Methods: The participants, 341 male and 127 female farmers, were divided into three groups by cultivation crop type: chili greenhouse, cucumber greenhouse, and orchard. We collected questionnaires, socioeconomic characteristics and agricultural factors, and spot urine. Pesticide exposure was examined using four organophosphate and four pyrethroids urinary metabolites: dimethylphosphate, dimethylthiophosphate, diethylphosphate, diethylthiophosphate, Cis and Trans-3-(2-2dichlorovinyl)-2, 2-dimethylcyclopropane carboxylic acid, 3-phenoxybenzoic acid (3-PBA), Cis-3-(2-2dibrmovinyl)-2, and 2-dimethylcyclopropane carboxylic acid. Each metabolite was summed ${\Sigma}DAP$ and ${\Sigma}PY$ according to the chemical class. Results: Urinary metabolite detection rates and concentrations were similar between the greenhouse groups, but the orchard group was different. Similar 3-PBA detection rates were found in the three groups, but the geometric mean was very high in the orchard group compared to the two greenhouse groups. 3-PBA concentration in the orchard group was $4.11{\mu}g/g$ creatinine; the chili and cucumber greenhouse groups were 1.27 and $1.16{\mu}g/g$ creatinine, respectively. ${\Sigma}DAP$ was significantly associated with cultivation crop type and seasonal variation, but ${\Sigma}PY$ was not relevant. Conclusions: Our results suggest that cultivation and crop type may be correlated with different pesticide types and exposure levels. Furthermore, seasonal factors were related as potential factors influencing the level of organophosphate metabolites, but not for pyrethroid metabolites.

Identification of urinary metabolite(s) of CKD-712 by gas chromatography/mass spectrometry in rats

  • Jeon, Hee-Kyung;Park, Hae-Yeon;Kim, Youn-Jung;Kwon, Oh-Seung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.188-188
    • /
    • 2003
  • Examination was made of the urinary metabolite(s) of CKD-712, which is a chiral compound, named S-YS49 derived from higenamine (one component of Aconite spp.) derivatives. First of all, to analyze the metabolite(s) of CKD-712, a simple and sensitive detection method for CKD-712 was developed by using gas chromatography-mass spectrometry GC/MS). Urine was collected from adult male Sprague-Dawley rats 250${\pm}$10g) in metabolic cage for 24hr after oral administration of 100 mg/kg of CKD-712. The recovery of CKD-712 after extraction and concentration with AD-2 resin column was above 90 % from rat urine. The detection limits of CKD-712 in urine was approximately 0.1 ng/mL. It has well been suggested that isoquinoline possessing catechol moiety such as CKD-712 should be subjected to the catechol-O-methyl kransferase activity in vivo. We detected three major peaks of presumed CKD-712 metabolites in the total ion chromatogram obtained from the rat urine sample after oral administration of CKD-712. From these results, it is assumed that the urinary metabolites are mono-methylation in the naphthyl moiety (metabolite I ), methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety and hydroxylation at in the naphthyl moiety (metaboliteII), and methylation at the C-6 or 7 hydroxy group in the isoquinoline moiety (metaboliteIII).

  • PDF