• Title/Summary/Keyword: urethane.urea

Search Result 23, Processing Time 0.043 seconds

Properties of Paint Protection Film Containing Poly(urea-urethane)-based Self-Recovery Coating Layer (Poly(urea-urethane) 자기복원 코팅층을 가진 도장 보호필름 물성 연구)

  • Minseok Song
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Recently, the application of paint protection films (PPFs) for automobiles having a self-recovery coating layer has been grown up. In this study, we report the evaluation results on the basic physical properties of a poly(vinyl chloride)- based PPF containing poly(urea-urethane) hybrid self-recovery coating layer. Depending on the main chemical composition and the thickness of poly(urea-urethane)-based coating layer for PPF, the self-recovery performance by an optical microscope and the stain resistance through color difference value are measured. To improve the surface properties and show its easy-cleaning effect against the polluted things, silicone-modified polyacrylate is introduced to the self-recovery coating composition. The contact angle of water on the coated surface is confirmed to show its hydrophobic surface. Finally, accelerated weathering test of paint protection film with poly(urea-urethane) hybrid coating layer is performed to check the possibility of discoloration and deformation due to long-term exposure on harsh condition.

Effect of Polyisocyanate Hardener on Waterborne Polyurethane Adhesive Containing Different Amounts of Ionic Groups

  • Rahman Mohammad Mizanur;Kim Han-Do
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.634-639
    • /
    • 2006
  • Waterborne polyurethane (WBPU) adhesive with varying amounts of dimethylol propionic acid (DMPA) was synthesized by prepolymer process and blended with polyisocyanate hardener. The mean particle size of the WBPU dispersion decreased with increasing DMPA content. $^1H$ NMR spectroscopy confirmed the formation of allophanate bonds and biuret bonds due to the reaction of hardener NCO with urethane/urea groups. The optimum NCO content with the greatest adhesive strength was dependent on the total content of urethane/urea groups in the WBPU molecules. The optimum NCO content increased with increasing number of urethane groups (DMPA content). The adhesion strength of WBPU adhesives was maximized at a molar ratio of hardener NCO to urethane/urea of about 0.28.

Preparation and Properties of Waterborne Poly(urethane-urea) Ionomers -Effect of the Type of Neutralizing Agent-

  • Yang, Jung-Eun;Lee, Young-Hee;Koo, Young-Seok;Jung, Young-Jin;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • A series of waterbome poly(urethane-urea) anionomers were prepared from isophorone diisocyanate (IPDI), polycaprolactone diol (PCL), dimethylol propionic acid (DMPA), ethylene diamine (EDA), and triethylamine (TEA), NaOH, or Cu($(COOCH_3)_2$) as neutralizing agent. This study was performed to decide the effect of neutralizing agent type on the particle size viscosity, hydrogen bonding index, adhesive strength, antistaticity, antibacterial and mechanical properties. The particle size of the dispersions decreased in the following order: TEA based samples (T-sample), NaOH based samples (N-sample), and Cu($(COOCH_3)_2$) based sample (C-sample). The viscosity of the dispersions increased in the order of C-sample, N-sample, and T-sample. Metal salt based film samples Of and C-sample) had much higher antistaticity than TEA based sample. By infrared spectroscopy, it was found that the hydrogen bonding index (or fraction) of samples decreased in the order of T-sam-pie, N-sample, and C-sample. The adhesive strength and tensile modulus/strength decreased in the order of T-sample, N-sam-pie, and C-sample. The C-sample had strong antibacterial halo, however, T- and N-samples did not

Effect of Catalyst Type and NCO Index on the Synthesis and Thermal Properties of Poly(urethane-isocyanurate) Foams

  • Shin, Hye-Kyeong;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.86-94
    • /
    • 2018
  • The effect of the NCO index and catalyst type on the thermal stability of poly(urethane-isocyanurate) (PUIR) foams was investigated to identify a method for enhancing the flame resistance of PUIR. PUIR foams were prepared using 4,4-diphenylmethane diisocyanate (MDI) and [(diethylene glycol)adipate]diol, which were synthesized by esterification of adipic acid and diethylene glycol. Dabco K-15, Dabco TMR-30, and Toyocat RX-5 were used as the catalysts for trimerization and gelation. The amount of urea and isocyanurate groups in PUIR was semi-quantitatively determined by normalizing their absorbance with the phenyl absorbance measured by FT-IR. The normalization data showed that Dabco TMR-30 effectively generated isocyanurate groups in PUIR. As a result, Dabco TMR-30 effectively raised the decomposition temperature and increased the 800 K and 900 K residues of the PUIR foam synthesized with an NCO index of 200.

Preparation and Properties of Polydimethylsiloxane Modified Urea with Multi Acrylate Group Coating Materials (Multi Acrylate기를 갖는 Polydimethylsiloxane 변성 Urea 코팅 액의 제조와 그 특성)

  • Bak, Seung Woo;Kang, Ho-Jong;Kang, Doo Whan
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.720-725
    • /
    • 2014
  • Aminopropyl terminated polydimethylsiloxane was synthesized by hydrosilylation reaction with hydride terminated polydimethlysiloxane and allyl amine. Polydimethylsiloxane modified urea with isocyanate group was prepared from cyclic trimer of hexamethyldiisocyanate with aminopropyl terminated polydimethylsiloxane. Polydimethylsiloxane modified urea/acrylate resin (PUA) was prepared from the urethane reaction of PU with isocyanate group and 2-hydroxyethylmethacrylate. PUA structure was analyzed by FTIR and NMR. Coating materials were prepared by mixing PUA, acrylic monomer, photo-initiator, and solvent and coated on PET film to obtain flexible hard coating film by UV irradiation.

Excitation Wavelength Dependence of Laser Ablation Mechanism of Urethane-Urea Copolymer Film Studied by Time-Resolved Absorbance Measurements

  • Tada, Takuji;Asahi, Tsuyoshi;Masuhara, Hiroshi;Tsuchimori, Masaaki;Watanabe, Osamu
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 2003
  • The excitation wavelength dependence of laser ablation dynamics of an azobenzene-containing urethane-urea copolymer film was investigated by measuring the laser fluence dependence of etch depth, transient absorbance change at each excitation wavelength, and transient absorption spectra. Moreover expansion/contraction dynamics was studied by applying nanosecond time-resolved interferometry. The threshold was determined at several excitation wavelengths from etch depth measurement, while time-integrated absorbance was obtained under excitation conditions. The photon energy required to remove the topmost of surface layer of the film did not .depend on excitation wavelength, and the penetration depth of excitation pulse dominated the etch depth. When the excitation wavelength was longer than 500 nm, permanent swelling was clearly observed but not for shorter wavelength excitation. In the latter case, photoisomerization occurred during excitation and the following photoreduction may play an important role. On the basis of the observations made in this study, a photochemical and photothermal mechanisms can explain mostly the short and long wavelength excitation results, respectively.

  • PDF

Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood

  • Lubis, Muhammad Adly Rahandi;Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.200-209
    • /
    • 2019
  • To improve the water resistance of melamine-urea-formaldehyde (MUF) resins, different levels of blocked polymeric 4,4 diphenyl methane diisocyanate (B-pMDI) were blended with MUF resins to prepare B-pMDI/MUF hybrid adhesives, and their adhesion performances were evaluated for the surface lamination of fancy veneer on plywood. FT-IR spectra showed that the de-blocked -NCO groups reacted with the -OH of hydroxymethyl groups of the MUF resins to form urethane bonds at 2% B-pMDI/MUF, which was detected before and after their hydrolysis. The mass loss after the hydrolysis consistently decreased as the B-pMDI level increased, indicating an improvement in the water resistance. As the B-pMDI level increased, the activation energy of hybrid adhesives decreased, which improved the reactivity of the hybrid adhesives. Additionally, the water resistance improvement of the hybrid adhesives increased the tensile shear strength of the surface laminated plywood in semi-water proof and water-proof by 23 % and 8 %, respectively, at 2% B-pMDI level. This was likely due to the urethane linkages in the hybrid adhesives. However, the formaldehyde emission from plywood panels bonded with the hybrid adhesives increased in the dry state, indicating incomplete curing of the hybrid adhesives.

Preparation ann their Characteristics of Microcapsules for Fragrant Fiber

  • Kijeong Hong;Park, Soomin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.162-165
    • /
    • 1998
  • Characteristics of microcapsule wall depend on chemical and physical condition in procedure such as type and concentration of constituent and microencapsulation methods, thus, if the other process conditions are same, they depend on mainly types of wall-forming materials. Isocyanates used in this study are very important constituent as hard segments preparing urethane or urea by reaction with alcohol or amine. (omitted)

  • PDF