• Title/Summary/Keyword: urea-formaldehyde

Search Result 168, Processing Time 0.02 seconds

Manufacture and Characterization of Melamine/Urea/Formaldehyde Based Microcapsules for Self-healing Applications (자가손상복구용 Melamine/Urea/Formaldehyde 마이크로캡슐의 제조 및 특성 분석)

  • Liu, Xing;Lee, Jong-Keun;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1674-1678
    • /
    • 2008
  • 자가손상복구 기법에서 마이크로캡슐은 손상복구 효율을 좌우하는 중요한 역할을 한다. 본 연구에서는 다양한 종류의 손상복구액을 함유한 마이크로캡슐을 Melamine/Urea/Formaldehyde를 외벽물질로 하여 in-situ 중합법에 의해서 oil-in-water emulsion 방법으로 제조하였다. 제조된 마이크로캡슐을 광학현미경, 주사전자현미경으로 캡슐 모폴로지, 외부 및 내부표면, 외벽 두께 등을 조사하였다. 그리고 입도분석기를 이용하여 캡슐의 크기를 측정하였으며 그 결과 캡슐의 직경은 평균 약 120 마이크론 정도였다.

  • PDF

Effect of pH and Buffering Potential of Important Domestic Woods on the Gelation Time of Urea-Formaldehyde Resin (주요국산재의 pH 및 Buffering Potential이 요소수지접착제의 Gel시간에 미치는 영향)

  • 권진헌;한태형;류경산
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • The pH and buffering potential for water extract of seven hardwoods and three softwoods were determined. The pH values ranged from 3.81 to 5.51 for hardwoods and 4.08 to 5.49 for softwoods. The gelation time for a urea-formaldehyde resin for each woods was determined and found to be a range of one minute thirty seven seconds to two minutes thirty nine seconds. Results shows that gelation time of a urea-formaldehyde resin was directly correlated to the pH and inversely correlated with acid buffering potential for seven hardwoods and three softwoods aqueous extracts

  • PDF

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Effects of Resin Compositions and Additives on Gelation Properties and Bonding Characteristics of Urea-Melamine-Formaldehyde resin adhesives (요소·멜라민 수지 접착제의 겔화성 및 접착특성에 미치는 수지조성과 첨가물의 영향)

  • Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.72-78
    • /
    • 1999
  • To accelerate the curing and to improve the bonding properties of urea-melamine-formaldehyde (UMF) resin adhesives for plywood, the effects of resin compositions and additives on gelation time and bonding strength were discussed. The gelation time of UMF resin prepared by simultaneous reaction with urea(U), melamine(M) and formaldehyde(F) at M/U molar ratio 0.2 was shortened as the molar ratio of formaldehyde to urea was increased. However, at F/U molar ratios higher than 2.5, the amounts of free fomaldehyde of resin could not satisfy with KS standard, Therefore, it was difficult to increase the amount of formaldehyde in resin composition for the purpose of fast gelation time. With increasing the molar ratio of melamine to urea(M/U) from 0.3 to 0.6 at constant F/U molar ratio 3.4, the gelation time of UMF resin was slightly decreased, while gradually increased at M/U molar ratio higher than 0.6. The gelation properties of UMF resin and bonding strength of UMF-bonded plywood could be enhanced by using ammonium chloride and p-toluene sulfonic acid as a curing-agent together with wheat flour and corngluten powder as a extender.

  • PDF

The Production of Microcapsules containing Fragrant material (방향물질을 함유한 마이크로캡슐 제조)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.5
    • /
    • pp.684-690
    • /
    • 2002
  • The microcapsules containing fragrant material as functional compound were produced by in-situ polymerization. The prepolymer was made from urea-formaldehyde(UF) and melamine-formaldehyde(MF) as wall materials of microcapsules. The effects of wall material, dispersing agent and ratio of wall material to core material on the mean diameter variation were investigated. Thermal efficiency and release behavior of microcapsules were measured. The resultant UF and MF microcapsules are capable of preserving fragrant oil for long self-life.

Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Jeong, Ho-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2011
  • In an effort to understand the hydrolytic degradation process of cured urea-formaldehyde (UF) resins responsible for the formaldehyde emission of wood-based composite panels, this study analyzed the influence of acid hydrolysis on the morphology of cured UF resins with different formaldehyde/urea (F/U) mole ratios such as 1.6, 1.4, 1.2 and 1.0. Field emission-scanning electron microscopy (FE-SEM) was employed to observe both exterior and fracture surfaces on thin films of cured UF resins before and after the etching with hydrochloric acid as a simulation of the hydrolytic degradation process. FE-SEM images showed that the exterior surface of cured UF resin with the F/U mole ratio of 1.0 had spherical structures after the acid hydrolysis while the other cured UF resins were not the case. However, the fracture surface observation showed that all the samples possessed spherical structures in the cured state of UF resins although their occurrence and size decreased as the F/U mole ratio increased. For the first time, we found the spherical structures in cured UF resins of higher F/U mole ratio of 1.4. After the acid hydrolysis, the spherical structures became a much predominant at the fracture surface. These results indicated that the spherical structures in cured UF resinswere much more resistant to the hydrolytic degradation by the acid than amorphous region.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Comparison of Formaldehyde Emission of Wood-based Panels with Different Adhesive-hardener Combinations by Gas Chromatography and Standard Methods

  • Eom, Young Geun;Kim, Sumin;Baek, In-Chan;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.29-39
    • /
    • 2005
  • Formaldehyde emissions from wood-based panels bonded with pine and wattle tannin-based adhesives, urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), and co-polycondensed resin of urea-melamine-formaldehyde (UMF) were measured by the Japanese standard method using a desiccator (JIS A 1460) and the EN 120 (European Committee For Standardization, 1991) method using the perforator value. In formaldehyde emission, all particleboards made using the wattle tannin-based adhesive with three different hardeners, paraformaldehyde, hexamethylenetetramine, and tris(hydroxyl)nitromethan (TN), satisfied the requirements of grade $E_1$. But only those made using the pine tannin-based adhesive with the hexamine as hardener met the grade $E_1$ requirements. Hexamine was effective in reducing formaldehyde emission in tannin-based adhesives when used as the hardener. While the UF resin showed a desiccator value of $7.1mg/{\ell}$ and a perforator value of 12.1 mg/100 g, the MF resin exhibited a desiccator value of $0.6mg/{\ell}$ and a perforator value of 2.9 mg/100 g. According to the Japanese Industrial Standard and the European Standard, the formaldehyde emission level of the MDF panels made with UF resin in this study came under grade $E_2$. The formaldehyde emission level was dramatically reduced by the addition of MF resin. The desiccator and perforator methods produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.

Comparison of Formaldehyde Emission Rate and Formaldehyde Content from Rice Husk Flour Filled Particleboard Bonded with Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Kim, Hyun-Joong;Lee, Hwa Hyoung;Yoon, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.42-51
    • /
    • 2006
  • The this study, the effect of rice husk flour (RHF) as scavenger on formaldehyde emission rate and formaldehyde content from urea-formaldehyde (UF) resin bonded RHF content wood particleboards (PB). Two type of particle size ($30{\mu}m$ and $300{\mu}m$) of RHF was premixed with the UF resin at 5% and 15% by weight. The performance of UF resins is greatly influenced by the curing characteristics in their curing processing. The curing behavior was monitored activation energy ($E_a$) by DSC and pH variation according to RHF contents. PB with dimensions of $27cm{\times}27cm{\times}0.7cm$ was prepared at a specific gravity of 0.75 using $E_1$ and $E_2$ class UF resins. Formaldehyde emission and formaldehyde content from RHF filled PB bonded with UF resin was measured by 24 h desiccator and perforator method, respectively. RHF causes an increased pH of UF resin. $E_a$ of the modified UF resin decreased independently of RHF particle size. As the pH and the $E_a$ variation of the UF resin containing RHF increased, the amount of formaldehyde content decreased. The formaldehyde emission and formaldehyde content levels of the PB bonded with 15 wt% of $30{\mu}m$ RHF and $E_2$ type UF resin were low and satisfied grade $E_1$, as measured by 24 h desiccator and perforator method. The result of a comparison between 24 h desiccator and perforator test using PB showed that the linear regression analyses show a good correlation between the results for the 24 h desiccator and the perforator tests. The linear regression of a correlation between the desiccator and the perforator was Y=4.842X-0.064 ($R^2=0.989$). RHF was effective at reducing formaldehyde emission and formaldehyde content in urea-formaldehyde adhesives when used as scavenger.

Modification of Urea Formaldehyde Resin with Pyrolytic Oil on Particleboard

  • Adegoke, Olaoluwa Adeniyi;Ogunsanwo, Olukayode Yekeen;Olaoye, Kayode Oladayo
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.219-224
    • /
    • 2020
  • Urea formaldehyde resins are widely used in the manufacturing of wood composite and their usage is always combined with release of formaldehyde characterized to be hazardous to health during and after the manufacturing of the products. This study investigates the effectiveness of wood-based adhesive from oil of pyrolysed Triplochiton scleroxylon sawdust for the production of composite board. The wood-derived Pyrolytic Oil (PyO) was blended with Urea Formaldehyde (UF) resin to formed Pyrolytic Oil-Urea Formaldehyde (PyOUF). The obtained PyOUF called Wood-Based Adhesives at four blends and control (UF) viz; 1:1, 1:2, 1:3, 2:1, 1:3 were further employed to prepare the composite board and test for their bonding strength by physical (water absorption-WA and thickness swelling-Th.S) and mechanical properties (modulus of elasticity-MOE, modulus of rupture-MOR, and impact bending-IB). Data obtained was analysed using analysis of variance at α 0.05. The result of analysis of variance conducted on physical properties show significant difference (p≤0.05) between the WA values obtained when testing the different blending proportion of PyOUF and likewise between 2 and 24 h of immersion. PyOUF had significant effect (p≤0.05) on Th. S for 24 h but no significant different (p>0.05) for the 2 h period of soaking. The analysis of variance on mechanical properties of the composite board (MOE, MOR, and IB) show significance differences (p≤0.05) between the strength values obtained when testing the different ratios of PyO with UF. PyO content influenced the properties of the boards and it is evident that PyO can be used in the manufacture of composite board.