• Title/Summary/Keyword: urea formaldehyde

Search Result 168, Processing Time 0.022 seconds

Development of Rice Hull Insulation Board using Urea Formaldehyde Resin (요소수지(尿素樹脂) 연질(軟質) 왕겨보드의 개발(開發))

  • Lee, Hwa-Hyoung;Kang, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-55
    • /
    • 1998
  • This study was carried out to develop low density board made of rice hull which needs proper use. Urea formaldehyde adhesive(UF) was used. The raw materials were the mixtures of the rice hulls from IllFum, DongGin, ChuChong, etc. The physical and mechanical properties of rice hull insulation board were examined. The results are as follows : For the thickness of 15mm of the low density rice hull board bonded with UF resin, proper manufacturing conditions were $171^{\circ}C$ of hot pressing temperature with thickness bar for optimum density, 12 percent of resin solid contents of rice hull ovendry weight, and 20 minutes of hot pressing time. These conditions meet Korean standards(KS 3201-1982) in relation to free formaldehyde emission, bending strength, water absorption and heat resistance.

  • PDF

A Method of Measuring Wood Failure Percentage of Wood Specimens Bonded with Melamine-Urea-Formaldehyde Resins Using I mage Analysis

  • KIM, Minseok;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.274-282
    • /
    • 2021
  • Transparent and colorless melamine-urea-formaldehyde (MUF) resins make it difficult to identify the area of wood failure percentage (WFP) in the fracture surface of bonded wood specimens. Therefore, in this study, we develop a method of measuring WFP after the adhesion strength measurement of MUF resins under shear stress. The fractured wood surface of b lock shear strength (BSS) specimens bonded with cold-setting MUF resins at three melamine contents (20%, 30%, and 40%) was marked black, and then, WFP was accurately measured via image analysis. WFP values measured using this method consistently increased with BSS as the melamine content increased, showing the reliability of this new method. The results suggested that this new method is useful and reliable for measuring the WFP of the fracture surface of wood specimens bonded with colorless adhesives such as urea-formaldehyde, MUF, and melamine-formaldehyde resins.

Effect of Resorcinol as Free Formaldehyde Scavenger for Fabric Finished with Urea-formaldehyde Precondensate. (Urea-Formaldehyde 수지가공포에 있어 Resorcinol의 유리 Formaldehyde 포착효과)

  • Kang, In-Sook;Kim, Sung-Reon
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.41-49
    • /
    • 1997
  • To control free formaldehyde release from fabric finished with N-methylol compounds, resin finished cotton fabric was treated with resorcinol solution, dried and cured. Factors affecting to control formaldehyde release have been investigated. It was shown that the aftertreatment with resorcinol greatly suppressed the free formaldehyde release. Up to concentration of about 5% of resorcinol, the concentration of resorcinol effected on the control of free and evolved formaldehyde. And at high concentration of resorcinol, however, the concentration became rather insensitive to contol formaldehyde release. Addition of some salt catalysts such as ammonium chloride, zinc nitrate, sodium acetate and ammonium acetate, was effective in decreasing formaldehyde release. Considering the effect on the control of formaldehyde and crease recovery, ammonium acetate was concidered to be the best catalyst. It was observed that the optimum curing temperature for the resorcinol treatment was about 15$0^{\circ}C$, and that the curing time did not affected formaldehyde release over three minutes. Although the treatment of resorcinol had a little adverse effect on crease recovery of resin finished fabric, this effect could be negligible.

  • PDF

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Effects of Storage Time on Molecular Weights and Properties of Melamine-Urea-Formaldehyde Resins

  • JEONG, Bora;PARK, Byung-Dae;CAUSIN, Valerio
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.291-302
    • /
    • 2020
  • As the properties of the melamine-urea-formaldehyde (MUF) resins were changing during their storage time, this study investigated the impacts of the synthesis method and melamine content of the MUF resins on the pH, apparent viscosity, molecular weights, and crystallinity to estimate these properties over storage times of up to 30 days. Melaminesat three addition levels (5, 10, and 20 wt% based on the resin solids) were simultaneously reacted with urea and formaldehyde (MUF-A resins), while those at the same addition levels were first reacted with formaldehyde and then with urea(MUF-B resins). The pH values of the MUF-A and MUF-B resins decreased linearly as the storage time increased; the apparent viscosity increased linearly for the low melamine contents (5% and 10%) but increased exponentially for 20%. As anticipated, the molecular weights (Mw and Mn) increased linearly with the storage time, with a steeper increase in the Mw of the MUF-B resins compared with that of the MUF-A resins. The crystallinity of the two resin types decreased with storage time at higher melamine content. The relationships between these properties and the storage time made it possible to estimate the property changes in these resins synthesized by the different synthesis methods and melamine contents; this could help predict the properties of such resins in the industry during their storage.

Effect of Urea-Formaldehyde Resin Adhesive Viscosity on Plywood Adhesion

  • Hong, Min-Kug;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.223-231
    • /
    • 2017
  • This work was conducted to investigate on the effect of urea-formaldehyde (UF) resin viscosity on plywood adhesion. The viscosity of UF resin was controlled either by adjusting the condensation reaction during its synthesis to obtain different target viscosities (100, 200 and 300 mPa.s) at two levels of formaldehyde/urea (F/U) mole ratios (1.0 and 1.2) or by adding different amounts (10, 20 and 30%) of wheat flour into the resins for the manufacture of plywood. When the viscosity of UF resin increased by the condensation reaction, the adhesion strength of plywood bonded with UF resin of 1.2 F/U mole ratio consistently increased, while those bonded with the 1.0 F/U mole ratio resin slightly decreased, suggesting a difference in the adhesion in plywood. However, the adhesion strength of plywood decreased as the viscosity increased by adding wheat flour, regardless of F/U mole ratio. The manipulation of UF resin viscosity by adjusting the condensation reaction was much more efficient than by adding wheat flour in improving the adhesion performance of plywood. These results indicated that a way of controlling the viscosity of UF resin adhesives has a great influence to their adhesion in plywood.

Micro-morphological Features of Liquid Urea-Formaldehyde Resins during Curing Process at Different Levels of Hardener and Curing Time Assessed by Transmission Electron Microscopy

  • Nuryawan, Arif;Park, Byung-Dae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • This study used transmission electron microscopy (TEM) to investigate the micro-morphological features of two formaldehyde to urea (F/U) mole ratio liquid urea-formaldehyde (UF) resins with three hardener levels as a function of the curing time. The micro-morphological features of the liquid UF resins were characterized after different curing times. As a result, the TEM examination revealed the presence of globular/nodular structures in both liquid UF resins, while spherical particles were only visible in the low F/U mole ratio resins. The high F/U mole ratio liquid UF resins also showed extensive particle coalescence after adding the hardener, along with the appearance of complex filamentous networks. When the resins were cured with a higher amount of hardener and longer curing time, the spherical particles disappeared. For the low mole UF resins, the particles tended to coalesce with a higher amount of hardener and longer curing time, although discrete spherical particles were still observed in some regions. This is the first report on the distinct features of the crystal structures in low F/U mole ratio UF resins cured with 5% hardener and after 0.5 h of curing time. In conclusion, the present results indicate that the crystal structures of low F/U mole ratio UF resins are formed during the curing process.

Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood

  • LUBIS, Muhammad Adly Rahandi;JEONG, Bora;PARK, Byung-Dae;LEE, Sang-Min;KANG, Eun-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.579-586
    • /
    • 2019
  • This work examined effects of the synthesis method and melamine content of melamine-urea-formaldehyde (MUF) resins on the bond-line features (i.e. resin penetration and bond-line thickness) in plywood. Two synthesis methods (MUF-A and MUF-B) and three melamine contents (5, 10, and 20%) were employed to prepare MUF resins. The MUF-A resins at three melamine contents were prepared by a simultaneous reaction of melamine, urea, and formaldehyde, while the MFU-B resins were prepared by reacting melamine at the same levels with formaldehyde followed by urea. The results showed that higher melamine content increased the viscosity of MUF-A and MUF-B resins. The resin penetration of MUF-A resins decreased by 48% while those of MUF-B resins increased by 16% at 20% melamine content. As a result, the MUF-A resins had greater bond-line thickness than those of MUF-B resins as the melamine content increased. The MUF-B resins resulted in thinner bond-line and greater resin penetration compared to those of MUF-A resins. The results suggested that MUF-B resins prepared with 20% melamine content had a proper combination of resin penetration and bond-line thickness that could produce plywood panel with a better adhesion performance.

Mechanical Properties of Rice Husk Flour-Wood Particleboard by Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.42-49
    • /
    • 2003
  • The objective of this research was to investigate the possibility of using rice husk flour as a partial substitute for the wood particles used as the raw material for manufacturing particleboards, by examining the physical and mechanical properties of the rice husk flour-wood particleboard as a function of the type of urea-formaldehyde resin used. Commercial wood particles and two types of rice husk flours (A type (30 ㎛), B type (300 ㎛)) were used. E1 and E2 class urea-formaldehyde resin was used as the composite binder, combined with 10 wt.% NH4Cl solution as a hardener. Rice husk flour-wood particleboards with dimensions of 27×27×0.7 (cm) were manufactured at a specific gravity of 0.7 with rice husk flour contents of 0, 5, 10, and 15 (wt.%). We examined the physical properties (specific gravity and moisture content), mechanical properties (three point bending strength and internal bonding) of the composite. In general, it can be concluded that composites made from rice husk flours are of somewhat poorer quality than those made from wood; however, blending in small amounts of rice husk flour (e.g., 5% to 10% by weight) may have no significant impact on quality.

Synchrotron X-Ray Diffraction Studies on Crystalline Domains in Urea-Formaldehyde Resins at Low Molar Ratio

  • WIBOWO, Eko Setio;PARK, Byung-Dae;CAUSIN, Valerio;HAHN, Dongyup
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.353-364
    • /
    • 2022
  • The crystalline domain of thermosetting urea-formaldehyde (UF) resins at low formaldehyde-to-urea (F/U) molar ratios (≤ 1.0) is known to be responsible for their poor performance as wood adhesives. Crystallization has been observed in 1.0 F/U UF resins during the addition reaction stage and at the end of the synthesis process (neat UF resins). The crystallinity and X-ray diffraction (XRD) spectra of the uncured neat UF resins, on the other hand, differed significantly from those of the cured neat UF resins, raising the possibility that their crystal structures were also different. This study demonstrates for the first time that the crystalline domains in 1.0 F/U UF resins generated from uncured and cured samples are identical. Despite having a lower crystallinity value, the synchrotron XRD patterns of purified neat UF resins were equivalent to the XRD patterns of cured neat UF resins. Transmission electron microscope images of the cured UF resins showed that the crystals were lamellar structures. This finding suggests that the crystal at low molar ratio UF resins are isotropic polycrystals with random orientation.