• 제목/요약/키워드: urban temperature

검색결과 1,009건 처리시간 0.029초

기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구 (A Study on the Urban Heat Simulation Model Incorporating the Climate Changes)

  • 강종화;김완수;윤정임;이주성;김석철
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

A Preliminary Analysis of the Impact of Urban Green Spaces on the Urban Heat Island Effect Using a Temperature Map

  • Myeong, Soo-Jeong
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.675-680
    • /
    • 2010
  • Temperature is one of the main issues in climate change, and the urban heat island effect in highly developed urban areas is an important issue that we need to deal with. This study analyzed the extent of the cooling effects of urban green spaces. The study used a surface temperature map of Seoul. It found that the cooling effects of green space was observed within limited distances, although it varied a little depending on the parks investigated. The cooling effect distance ranged from 240m to 360m, averaging about 300m. It also found the size of an urban green space does not make much difference in cooling the surrounding areas. Although further investigation with diverse urban areas should be conducted on this matter, the results did imply that many small green spaces in the neighborhood are more effective than a single big green space in mitigating the heat island effects of cities.

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

고밀도 도시기후관측 망 자료를 이용한 대구의 여름철 기온 수평 공간 분포의 일변화 (Diurnal Variations in the Horizontal Temperature Distribution using the High Density Urban Climate Observation Network of Daegu in Summer)

  • 김상현;김백조;김해동
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.259-265
    • /
    • 2016
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network of Daegu in summer, 2013. We compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas are faster than in urban areas. It is mainly due to the difference of surface heat capacity. In addition, local wind circulation also affects the discrepancy of thermal spatiotemporal distribution in Daegu. Namely, the valley and mountain breezes affect diurnal variation of horizontal distribution of air temperature. During daytimes, the air(valley breeze) flows up from urban located at lowlands to higher altitudes of rural areas. The temperature of valley breeze rises gradually as it flows from lowland to upland. Hence the difference of air temperature decreases between urban and rural areas. At nighttime, the mountains cool more rapidly than do low-lying areas, so the air(mountain breeze) becomes denser and sinks toward the valleys(lowlands). As the result, the air temperature becomes lower in rural areas than in urban areas.

통합모델을 활용한 이류와 도시비율이 서울 수도권 지역의 도시열섬강도에 미치는 영향 분석 (Analysis of the Effects of Advection and Urban Fraction on Urban Heat Island Intensity using Unified Model for Seoul Metropolitan Area, Korea)

  • 홍선옥;김도형;변재영;박향숙;하종철
    • 대기
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2019
  • This study investigates the impacts of urban land-use fraction and temperature advection on the urban heat island intensity over the Seoul metropolitan area using the UM (Unified Model) with the MORUSES (Met Office Reading Urban Surface Exchange Scheme) during the heat wave over the region from 2 to 8, August 2016. Two simulations are performed with two different land-use type, the urban (urban simulation) and the urban surfaces replaced with grass (rural simulation), in order to calculate the urban heat island intensity defined as the 1.5-m temperature difference between the urban and the rural simulations. The land-use type for the urban simulation is obtained from Korea Ministry of Environment (2007) land-use data after it is converted into the types used in the UM. It is found that the urban heat island intensity over high urban-fraction regions in the metropolitan area is as large as 1℃ in daytime and 3.2℃ in nighttime, i.e., the effects of urban heat island is much larger for night than day. It is also found that the magnitude of urban heat island intensity increases linearly with urban land-use fraction. Spatially, the estimated the urban heat island intensities are systematically larger in the downwind regions of the metropolitan area than in the upwind area due to the effects of temperature advection. Results of this study indicate that urban surface fraction in the city area and temperature advection play a key role in determining the spatial distribution and magnitude of urban heat island intensity.

Characteristics of Thermal Performance on the Different Ambient Air Temperatures of Green Roof Plants

  • Han, Seung Won;Park, Joon Sung;Kim, Jae Soon;Jeong, Myung Il
    • 환경생물
    • /
    • 제34권4호
    • /
    • pp.272-280
    • /
    • 2016
  • Changes in land use and increase in urban energy consumption influence urban life. This study analyzed the characteristics and patterns of urban heat and presents management schemes to generate a comfortable and sustainable urban environment. The study aimed to demonstrate the positive effects of artificial ground greening on improving the microclimate through evapotranspiration using perennial herbs. We have designed a chamber that could control constant temperature and humidity, measure temperature reductions in each plant and changes in sensible heat and latent heat. This study identified Sedum kamtschaticum as the most effective plant in controlling temperature. At $22^{\circ}C$, $3.2^{\circ}C$ temperature reduction was observed, whereas four other plants showed a $1.5^{\circ}C$ reduction. At $25^{\circ}C$, $2.0^{\circ}C$ temperature reduction was observed. On the other hand, the use of Sedum sarmentosum resulted in the lowest effect. Zoysia japonica is the most commonly used ground covering plant, although the temperature reduction of Lysimachia nummularia was more effective at high temperature conditions. Sensible heat and latent heat were calculated to evaluate the thermal performance of energy. At a temperature >$30^{\circ}C$, L. nummularia and S. sarmentosum emitted high latent heat. In this study, we analyzed the thermal performance of green roof perennial plants; in particular, we analyzed the evapotranspiration and temperature reduction of each plant. Since the substrate depth and types, plant species, and seasonal change may influence temperature reduction and latent heat of green roofs, further studies are necessary.

통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석 (Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model)

  • 홍선옥;변재영;박향숙;이영곤;김백조;하종철
    • 대기
    • /
    • 제28권4호
    • /
    • pp.427-441
    • /
    • 2018
  • This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 - (The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea)

  • 조용현;신수영
    • 한국조경학회지
    • /
    • 제30권4호
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

토지피복유형 특성과 도시 온도의 관계 분석 - 김해시를 대상으로 - (A Study on the Relationship between Land Cover Type and Urban Temperature - focused on Gimhae city -)

  • 송봉근;박경훈
    • 한국지리정보학회지
    • /
    • 제22권2호
    • /
    • pp.65-81
    • /
    • 2019
  • 본 연구는 대한민국 경상남도 김해시를 대상으로 토지피복유형과 도시온도 간의 관계성을 분석하였다. 자료는 2000~2010년의 토지피복도와 MODIS 표면온도, RCP 기반 한반도 상세 기온자료를 활용하였다. 시가화지역의 면적비율과 표면온도의 상관성은 0.417, 농업지역은 0.512, 산림 지역은 -0.607로 나타났다. 표면온도와 기온의 상관성은 0.301이었다. 기온과의 상관성에서는 시가화지역이 0.275, 농업지역 0.226, 산림지역 0.350으로 분석되었다. 시가화지역과 농업지역은 면적이 증가할수록 표면온도와 기온이 증가하는 것으로 나타났고, 산림지역은 반대의 향상을 보였다. 구조방정식 모형 결과에서는 시가화지역과 농업지역은 표면온도 상승에 직접적인 효과가 있고, 산림지역은 기온 저감에 직접적인 효과가 있었다. 향후에는 지표면 부근에서 측정된 기온자료를 활용하여 공간특성의 변화에 따른 표면온도와 기온의 관계성을 파악하는 것이 필요하며, 이를 통해 도시 및 환경계획 차원에서 도시열섬 완화를 위한 방안을 마련할 것이다.

도시의 3차원 물리적 환경변수와 지표온도의 관계 분석 (Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature)

  • ;이수기;한재원
    • 국토계획
    • /
    • 제54권2호
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.