• Title/Summary/Keyword: urban subway construction

Search Result 103, Processing Time 0.035 seconds

A Study on the Nano-Plasma Rock Breaking Blasting Method Using Rapidly Expansive Metal Mixture (급팽창 금속혼합물을 이용한 나노프라즈마 바위 파쇄공법에 관한 연구)

  • Kim Sung-Kook;Ahn Myung-Seog;Cho Myung-Chan
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.57-74
    • /
    • 2005
  • In the past, explosives like dynamite was used to blast rock. However, today it is difficult to use explosives in urban blastinglike excavation for subway, building, and housing land. According to Korea Department of Construction and Transportation's proposal for blasting design manual and test blasting, from TYPE I blasting to TYPE IV blasting are recommended when we determine 0.3cm/sec(centisec) as a maximum allowable ground vibration with a distance between $25m\~120m$ from structures. This article was written to introduce one of TYPE I (reck blasting within 25m from structures) blasting method, Nano-Plasma blasting method. When Nano-Plasma blasting method is applied in urban blasting job, ground vibration (15m away from blasting point) is expected 0.1cm/sec, which is only half of a ground vibration when low ground vibration blasting method is applied. By this unique characteristic, Nano-Plasma blasting method is epochal urban blasting technique.

Analysis of the right to sunshine for elevated structure construction (고가 구조물 건설에 따른 일조권 분석)

  • 강기수;김상석;양승태;강인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.485-490
    • /
    • 2004
  • Recently, distribution transfer velocity was extremely lowered by high supply rate of vehicle and low road rate. Therefore expansions of transfer network these were subway, road and railway to recover competitive power as a reform measure of physical distribution traffic were become preference previous subject. For reason of that, an expansion of transfer network is meeting competitive power as selected an elevated road in the ground road network that condition of location calm and get out of the existing urban than the underground road to connect oversensitive a large city and expanded small and medium satellite town. In the meantime, while elevated structures construct, they go through the civilian residential section, agriculture land, etc. The consequence is that it raises a vibration, noise, dust, an infringement of the right to a view and an infringement of the right to a sunshine. In this study, we analyzed Quantitatively sunshine quantity with building 3D simulation model of civil structure. Therefore, we present as planning data to reduce a civilian appeal for dispute of the right to sunshine and an economic and time loss between the government and construction company In addition to that, for the standard of the standard plan of usable sunshine quantity program in the practical business, the building of convenient user interface will be the project to be done.

  • PDF

Research of the user oriented interior design for FRT (FRT차량의 사용자중심적인 실내디자인 연구)

  • Kim Sang-Joong;Kim Seong-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.455-460
    • /
    • 2004
  • The Fuel cell Rubber tired Train (FRT), which is now getting the attention as the next generation vehicle with its environment-friendliness, is the transportation for smooth connections of city traffic. It is the revival of the surface-car system with its revaluation of the function and technological development. Accordingly, fixed time operation and high speed driving became possible. FRT is operated together with other vehicles on the regular drive way. While this vehicle can solve the problem of traffic congestion in the urban area, it also can be cost-effective when it is compared to the cost of subway construction. It is also designed to minimize the underground or elevated traffic lane, to introduce the new construction technology, to reduce a term of works, and to cut down the operation cost by unmanned automatic driving system. Furthermore, it is considered as the alternative measure of other transportation due to its potential for the ecological way of speed improvement and the accessability to the disabled, elderly and children by developing the vehicle with folding steps or by building the high boarding platforms. In this research, I concentrated on the user oriented interior design of the FRT to make it passenger-friendly and safe in order to maximize the utilization of the vehicle so that all users including wheelchaired, user with baby carriage, elderly and children can conveniently use this vehicle.

  • PDF

Determination of effective parameters on surface settlement during shield TBM

  • Kim, Dongku;Pham, Khanh;Park, Sangyeong;Oh, Ju-Young;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-164
    • /
    • 2020
  • Tunnel excavation in shallow soft ground conditions of urban areas experiences inevitable surface settlements that threaten the stability of nearby infrastructures. Surface settlements during shield TBM tunneling are related to a number of factors including geotechnical conditions, tunnel geometry and excavation methods. In this paper, a database collected from a construction section of Hong Kong subway was used to analyze the correlation of settlement-inducing factors and surface settlements monitored at different locations of a transverse trough. The Pearson correlation analysis result revealed a correlation between the factors in consideration. Factors such as the face pressure, advance speed, thrust force, cutter torque, twin tunnel distance and ground water level presented a modest correlation with the surface settlement, while no significant trends between the other factors and the surface settlements were observed. It can be concluded that an integrated effect of the settlement-inducing factors should be related to the magnitude of surface settlements.

A Study for Safety Management on Ground Excavation by Analysis of Accident Events (사고사례 분석을 통한 흙막이 굴착공사 안전관리 개선방안 연구)

  • Seong, Joo Hyun;Jung, Soo Hyung;Shin, Ju Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.175-183
    • /
    • 2011
  • With recent growth of population and industry, urban development grows into grand scheme of excavation and construction in urban area. As the development progress advanced, the developments get large and deepen. With a progress of technology development in geotechnical engineering in Korea, most our grand scheme of projects follows great progress. On the other hand, some excavation in construction site caused direct or indirect event that affects the adjacent or surrounding structures by excavation from time to time. This event usually happens around residential and commercial area where underground tunnel, subway station, commercial building, and high-rises excavation site is, could lead great damage on economy as well as personal injury or human casualties. In order to prevent this event, the study has to be done with analysis on various events of excavation and its cause. In this paper, the research has collected the various excavation events and their causes to analyze on each site and event to define emphasis on surrounding environment.

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

Displacement and Stress Monitoring for Excavation Deep Foundation (인접지역의 깊은 터파기 굴착에서 변위 및 응력의 계측)

  • 원연호
    • Explosives and Blasting
    • /
    • v.17 no.1
    • /
    • pp.27-55
    • /
    • 1999
  • The excavation works for deep foundation in urban areas have recently increased complaints of blasting vibration and settlement of ground level. Foundation must be excavated approximately up to 24-28m depths from the surface. The roads and subway line pass through the excavation area. The Dae-chung station is also located at the nearest distance 5-35m from the working site. To protect subway station and adjacient some structures from blasting and settlement, the level of ground vibration, displacements and stress were monitored and analyzed. The results can be summarized as follows ; 1. An empirical particle velocity equation were obtained by test blasts at Nassan Missi 860 Office tel construction site. $V{\;}={\;}K(D/\sqrt{W})^{-n}$, where the values for n and k are estimated tobe 0.371 and 1.551. From this ground vibration equation, the max. charge weight per delay time against distance from blasting point is calculated. Detailed blasting method is also presented. 2. To measure the horizontal displacement in directions perpendicular to the borehole axis, 6 inclinometers installed around working sites. The displacement at the begining was comparatively high because the installation of struts was delayed, but after its installation the values showed a stable trend. Among them, the displacement by 3 inclinometers installed on a temporary parking area showed comparatively high values, for example, the displacement measured at hole No. IC-l recoded the max. 47.04mm for 6 months and at hole No. IC-2 recorded the max. 57.33mm for 7 months. So, all of these data was estimated below a safe standard value 103mm. 3. Seven strain gauge meter was installed of measure the magnitude and change of stress acted on structs. The measured value of maximum stress was $-465{\;}kgf/\textrm{cm}^2,{\;}-338.4{\;}kgf/\textrm{cm}^2,{\;}302.3{\;}kgf/\textrm{cm}^2$ respectively. In compareto the allowable stress level of steel, they are estimated to be safe.

  • PDF

The estimation of the behavior of urban shallow subway tunnels being applied external load (외력 작용시 도심지 얕은 지하철 터널의 거동평가)

  • Lee, Jeung-Suk;You, Kwang-Ho;Park, Yeon-Jun;Baek, Kyung-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.101-113
    • /
    • 2003
  • Nowadays, the construction of new ground structures, which can influence the stability of existing underground structures, is increasing. Consequently, many technical problems occur during the design and construction stage of the new structures. In constructing a neighboring structure, reasonable design and construction is strongly required to balance between the stability of the existing underground structures and the economy of construction of the new structure in terms of the importance of the existing underground structures. Many researches have been performed to estimate the safe region and behavior of underground structures. Constructing a new ground structure above the existing underground structure, external loads are to be applied to the existing underground structure. In this study, therefore, the stability and safe region of the existing underground structure was re-established with respect to the relative location of the new ground structure with the underground structure, the depth from surface to top of the underground structures, and ground conditions.

  • PDF

Analysis of Effect of Infrastructure Property on an Apartment Housing Price - Focused on Urban Subway System in Seoul Metropolitan Area - (사회기반시설 이용특성에 따른 공동주택의 가격 영향에 관한 연구 - 수도권 도시철도를 중심으로 -)

  • Bae, Sangyoung;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • The study intends to identify the effects of infrastructure property on an apartment house by analyzing the price variation affected by factors constituting the quality of the transit services of each individual station in urban railway system based on hedonic price model. The research findings indicate that the prices depending on the transit users have increased from 7.8% to 12.2% in Seoul and decreased from 6.1% to 12.9% in Gyeonggi, which implies that a lower number of transfer users has a positive effect on housing prices in Seoul unlike Gyeonggi. It also is noteworthy that the distance to the urban railway station had a negative effect on housing prices in Seoul and positive effect in Gyeonggi. Taking these results together, in Seoul, the increase in the number of transit users had a negative effect on neighborhood housing prices. When analyzed by segments, however, an additional negative effect was observed only in the apartments located within the radius of 100 meters. It is also found that the impact of transit users varies according to the regional characteristics, such as the density of commercial facilities and the population density, and the spatial extent of negative effect also showed regional differences. These results provide implications for the planning of new stations, new cities, and land use of existing areas around stations.