• Title/Summary/Keyword: urban streams

Search Result 234, Processing Time 0.028 seconds

Groundwater and Surface Water Hydrology in the Lake Rotorua Catchment, New Zealand, and Community Involvement with Lake Water Quality Restoration

  • White, Paul A.;Hong, Timothy;Zemansky, Gil;McIntosh, John;Gordon, Dougall;Dell, Paul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.8-14
    • /
    • 2007
  • Water quality in Lake Rotorua, New Zealand, deteriorated since the 1960s because of excessive phytoplankton growths due principally to increasing nitrogen and phosphorus in the lake waters. Nutrient concentrations in eight of the nine major streams feeding Lake Rotorua have increased since 1965. The groundwater system has a key role in the hydrology of the Lake Rotorua catchment and the groundwater system is probably the control on the time delay between intensification of agricultural land use and response of surface water quality. All major, and many minor streams, in the catchment are fed by springs. Two lithological units are most important to groundwater flow in the Lake Rotorua catchment: Mamaku Ignimbrite, erupted in about 200,000 years ago and Huka Formation sediments which filled the caldera left by the Mamaku Ignimbrite eruption. Rainfall recharge to groundwater in the groundwater catchment of Lake Rotorua is estimated as approximately 17300 L/s. A calibrated steady-state groundwater flow model estimates that approximately 11100 L/s of this flow discharges into streams and then into the lake and the balance travels directly to Lake Rotorua as groundwater discharge through the lake bed. Land use has impacted on groundwater quality. Median Total Nitrogen (TN) values for shallow groundwater sites are highest for the dairy land use (5.965 mg/L). Median TN values are also relatively high for shallow sites with urban-road and cropping land uses (4.710 and 3.620 mg/L, respectively). Median TN values for all other uses are in the 1.4 to 1.5 mg/L range. Policy development for Lake Rotorua includes defining regional policies on water and land management and setting an action plan for Lake Rotorua restoration. Aims in the action plan include: definition of the current nutrient budget for Lake Rotorua, identification of nutrient reduction targets and identification of actions to achieve targets. Current actions to restore Lake Rotorua water quality include: treatment of Tikitere geothermal nitrogen inputs to Lake Rotorua, upgrade of Rotorua City sewage plant, new sewage reticulation and alum dosing in selected streams to remove phosphorus.

  • PDF

A Study for Estimation of Chlorophyll-a in an Ungauged Stream by the SWMM and an Artificial Neural Network (SWMM과 인공신경망을 이용한 미 계측 하천의 클로로필a 추정에 관한 연구)

  • Kang, Taeuk;Lee, Sangho;Kim, Ilkyu;Lee, Namju
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.670-679
    • /
    • 2011
  • Chlorophyll-a is a major water quality indicator for an algal bloom in streams and lakes. The purpose of the study is to estimate chlorophyll-a concentration in tributaries of the Seonakdonggang by an artificial neural network (ANN). As the tributaries are ungauged streams, a watershed runoff and quality model was used to simulate water quality parameters. The tributary watersheds include urban area and thus Storm Water Management Model (SWMM) was used to simulate TN, TP, BOD, COD, and SS. SWMM, however, can not simulate chlorophyll-a. The chlorophyll-a series data from the tributaries were estimated by the ANN and the simulation results of water quality parameters using SWMM. An assumption used is as follows: the relation between water quality parameters and chlorophyll-a in the tributaries of the Seonakdonggang would be similar to that in the mainstream of the Seonakdonggang. On the assumption, the measurement data of water quality and chlorophyll-a in the mainstream of the Seonakdonggang were used as the learning data of the ANN. Through the sensitivity analysis, the learning data combination of water quality parameters was determined. Finally, chlorophyll-a series were estimated for tributaries of the Seonakdonggang by the ANN and TN, TP, BOD, COD, and temperature data from those streams. The relative errors between the estimated and measured chlorophyll-a were approximately 40 ~ 50%. Though the errors are somewhat large, the estimation process for chlorophyll-a may be useful in ungauged streams.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

A Study of Maintenance Method by Monitoring and Evaluation of Water Friendly Facilitiesin Urban Streams - A Case Study of Jeonjucheon in Jeonju-si - (하천친수시설의 모니터링과 평가를 통한 유지관리방안 연구 - 전주천을 중심으로 -)

  • Lim, Hyunjeong;Jeong, Moonsun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.263-274
    • /
    • 2019
  • The purpose of this study is to examine a monitoring method, management zones, and maintenance strategies for water friendly facilities in urban streams after the completion of ecological restoration projects. Maintenance monitoring items are composed of 'use space& facilities', 'trails& bike roads', 'access', and 'boards'. The evaluation standards of water friendly facilities are 'maintenance conditions', 'safety', and 'usage level' which are rated as 'good', 'moderate', and 'poor'. Through a field survey and evaluation of 15 stream sections in Jeonjucheon,the management levels of each water friendly facility are determined as 'priority maintenance', 'general maintenance', 'maintain/remove', and 'remove'. Based on the evaluation results, management zones and maintenance strategies are proposed for each stream section. As a results, the stream sections of J2, J3, J4, and J9 which have 5 to 9 facilities with 'priority maintenance' are determined as 'intensive management zone'. The stream sections of J5, J6, J7, J8, J11, and J14 which have 1 to 3 facilities with 'priority maintenance' are determined as 'regular management zone'. The stream sections of J1, J10, J12, J13, and J15 which have no facilities with 'priority maintenance' are determined as 'minimum management zone'. The process of monitoring & evaluation system and determining management zones can be applied to establish a systematic maintenance plan for water friendly facilities by participation of governance in the future.

Changes of Epilithic Diatom Communities according to Urbanization Influence in the Pocheon and Youngpyeong Streams (도시화 정도에 따른 포천천과 영평천의 돌 부착규조 군집 변화)

  • Kim, Yong-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.468-480
    • /
    • 2007
  • The urbanization is altering the hydrology, water quality, channel form of waterway and changing the composition of biological communities in the aquatic ecosystem. Recently, towns grew bigger by the drift of large numbers of people and the medium and small leather and dyeing industries around the Pocheon and Youngpyeong streams. The discharges of sewage were increased by them. The UII (urban intensity index) was 85 (st. P-3) and 91 (st. P-6) in the Pocheon stream and about 20 in the Youngpyeong stream. A total 141 taxa of epilithic diatoms which were composed of 2 order, 8 family, 30 genera. Dominant species were Navicula saprophila, N. subminuscula, Nitzschia palea, Gomphonema pseudoaugur in the Pocheon stream and Achnanthes alteragracillima, A. convergens, A. minutissima, N. minima, N. fonticola, N. frustulum and Cymbella minuta var. silesiaca in the Youngpyeong stream. It Showed the different composition of dominant species by the urbanization near two streams. In the relationships between UII and environmental factors such as EC, BOD, COD, TN, TP and DAIpo, UII showed the high relations $(r^2>0.8)$. It was the difference of organic pollution according to urbanization. It therefore, was higher the relative abundance and more the numbers of saprophilous taxa in the Pocheon stream than the Youngpyeong stream. The water quality of two streams by biological indicators(DAIpo) was polysaprobic state(st. P-3, P-4, P-5) in the Pocheon stream and was oligosaprobic (Y-1), mesosaprobic (Y-2, 3) and polysaprobic state (Y-4) in the Youngpyeong stream during the investigation periods.

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Assessment of Non-point Pollutants and Runoff Characteristics in Urban Area, Korea

  • Park, Jae-Young;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.67-75
    • /
    • 2005
  • The objectives of this study were to understand the runoff characteristics of the non-point sources originating from impervious surfaces and to assess their effect on the aquatic environment in the urban areas. The concentration of pollutants (SS, BOD, COD and T-P) except for T-N showed the highest value in runoff from road, and event mean concentration (EMC) also showed high value from road. The pollutants discharged from road showed a higher concentration in the beginning stage (0 ${\sim}$ 30%) of progressive percentage of rainfall. The contribution percentages of non-point sources by load were 44.9% for SS, 11.2% for BOD, 21.4% for COD, 11.4% for T-N and 8.1% for T-P in the total load of pollutant discharged through sewer. From our results, the road was a significant potential source that deteriorated water quality of the streams and lakes in the vicinity of the urban area during the rain period. Therefore, counter plan is required to reduce pollutant concentration on the road from non-point sources in the urban area. Also, since pollutant concentration in the beginning stage of rainfall was quite high, road cleaning seems to be one of the very useful methods to prevent inflowing of pollutants to the aquatic environment.

Ecological Linkage Assessment of Urban Park by Using Connection Components in Establishment Green Network (도시녹지네트워크 구축에서 연결요소를 활용한 도시공원의 생태적 연결 가능성 평가)

  • Kim, Mi-Ri;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.61-72
    • /
    • 2014
  • We implemented ecological linkage assessment, through the connection components of the urban forests, rivers and parks, for the ecological connection of the urban parks which are standing out as the core of the urban green networks, so as to suggest basic data to compare, evaluate and improve urban green networks, as a basic study for the evaluation of the ecological connectabilities between the cities. For the ecological linkage assessment, we analyzed to see if the urban parks of Goyang, Ansan and Yongin, which are the subject cities, are actually ecologically connected with forests and rivers, using distance and roads, which are physical connection elements, in consideration of the mobility of the wild animals, and greening ratios and impervious pavement ratios, which are ecological connectabilities in consideration of the ecological values. The overall result of the ecological linkage assessment the physical connection elements and the ecological connection elements shows that the ecological green network ratio through direct connection states is 36.62% in Goyang, 42.55% in Ansan and 64.00% in Yongin, respectively, giving the ecological connectability ratio of less than half, with the average urban ecological green network ration of 47.72%. The comparison result of the ecological connectabilities between the object cities employing the connection elements indicates that when you set up green networks, you should consider together the physical connection elements, such as the roads, which will lower the ecological connectabilities - rather than do it simply based on areas and distances - while the ecological connection elements with the forests and the streams should be reinforced, so that the ecological connectabilities of the urban parks may be enhanced.

A Comparative Analysis on the Pollination Potential Environment of Apis millifera and Bombus ignitus Using the Maxent Model - Focused on Seoul - (Maxent 모델을 이용한 호박벌과 양봉꿀벌의 수분 잠재환경 비교 분석 - 서울시를 중심으로 -)

  • Kim, Yoon-Ho;Cho, Yong-Hyeon;Bae, Yang-Seop;Kim, Tae-Jong;Son, In-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The honey bee has a crucial ecological status for maintaining the natural ecology system. Pollination mediations by honey bees are recognized as an efficient way to enhance the quality of biological diversity and green areas in the nature and the urban ecological system. However, the population of bee around the world is decreasing and we do not know exactly how bees react to the physical environment in the urban area. This study is a basic research for the improvement of pollination services in the Korean urban ecological system. It aims to induce and review environmental variables which have high relations with the activities of pollination mediation insects in the urban area. The study established a Maxent model using five urban environmental variables that reflect the ecology of Bombus ignitus and the place information where Bombus ignitus appears in 18 spots of Seoul city, and compared with previous research results on Apis millifera. Bombus ignitus preferred places with more natural environments such as mountain forest areas and vicinities of streams. They preferred Stratified Tree Area the most among the vegetation types existing in the urban area. Comparing chicken models, both species saw their response value drop as the building coverage rose. In the case of Apis millifera and Bombus ignitus variables, the response value of both species was high in 10 out of 20 types. The result of this study is expected to provide basic information for improving the pollination services in the Korean urban area and to be utilized as the basic materials for the future urban planning.

Increasing Effect of Urban Instream flow in Daejeon' Three Streams by Operating Upstream Reservoirs (대전 3대 하천 상류 저수지 운영에 의한 유지유량 증대 효과)

  • Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.464-468
    • /
    • 2009
  • 대전 갑천 상류의 괴곡지와 유등천 상류의 선골 계획댐, 대전천 상류의 소호, 한밭 계획지 등 저수지의 직렬, 병렬 연계 운영을 고려하여 1966년부터 2007년까지 주요 지점의 하천유량을 일별로 모의하였고, 회덕 지점의 목표유량을 2.79 $m^3/s$로 설정하고 계획댐의 유무에 따라 유지유량 증대효과를 분석한 결과 회덕 지점의 하천유지유량을 1.396 $m^3/s$에서 2.928 $m^3/s$ 로 크게 증대시키는 효과를 얻었다.

  • PDF