• Title/Summary/Keyword: urban streams

Search Result 234, Processing Time 0.028 seconds

Application of QUAL2K Model for Daejeon Tandongcheon, A Small Urban Stream and Evaluation of Terrace Land Constructed Wetland (도시 소하천, 대전 탄동천, 수질개선 대안 수립을 위한 QUAL2K 수질모델 구축과 제외지 인공습지공법 적용 효율 평가)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.192-199
    • /
    • 2013
  • The Tandong-cheon stream is a 7.4 km long small urban stream that passes through Daeduk Science Town in Daejeon Korea. Despite the stream has great potential as an educational and recreational site due to its central location in the science town and science museums nearby, environmental aspect especially for water quality has not been evaluated properly. Through field survey, major pollution sources of the stream were identified and effect of water quality improvement alternatives were evaluated using a QUAL2K water quality model for the stream. The study indicated that controlling major pollution sources of the stream alone may not be sufficient for reaching the water quality target. Therefore, additional pollution control methods are necessary. We applied the developed model to evaluate the effects of a constructed wetland on the terrace land, and analyzed whether the water quality target can be met at the outlet of the stream. It is expected that this study would provide a good reference for environmentally sound management of small urban streams in Korea.

On Study of Runoff Analysis Using Satellite Information (위성자료를 이용한 유출해석에 관한 연구)

  • Kang, Dong Ho;Jeung, Se Jin;Kim, Byung Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.13-23
    • /
    • 2021
  • This study intended to assess the reliability of topographic data using satellite imaging data. The topographical data using actual instrumentation data and satellite image data were established and applied to the rainfall-leak model, S-RAT, and the topographical data and outflow data were compared and analyzed. The actual measurement data were collected from the Water Resources Management Information System (WAMIS), and satellite image data were collected from MODIS observation sensors mounted on Terra satellites. The areas subject to analysis were selected for two rivers with more than 80% mountainous areas in the Han River basin and one river basin with more than 7% urban areas. According to the analysis, the difference between instrumentation data and satellite image data was up to 50% for peak floods and up to 17% for flood totals in rivers with high mountains, but up to 13% for peak floods and up to 4% for flood totals. The biggest difference in the video data is Landuse, which shows that MODIS satellite images tend to be recognized as cities up to 60% or more in urban streams compared to WAMIS instrumentation data, but MODIS satellite images are found to be less than 5% error in forest areas.

Study on the Effects of In-streams by Discharging the Treated Sewage in Urban Stream (도시하천에서 하수처리수의 유지용수 이용에 따른 영향 평가 연구)

  • Bang Cheon-Hee;Park Jae-Roh;Kwon hyok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.75-86
    • /
    • 2005
  • Recently since urbanization has brought about a dried stream and a worse water quality, Anyang city discharged the third treated sewage into the upper stream of Anyancheon and Hakuicheon. As the result, Hakuicheon had the water level and velocity enough for a living thing in the water to live in but water quality was worse than it had been. Therefore in case of meeting the water level and velocity of the second grade water-quality which living things in the water can live in, the discharge and water quality to secure in-stream flow must be at least 0.350 $m^3/s$ and $BOD_5\;3.2 mg/{\iota}$ respectively. In Anyancheon the water level was increased a little higher than it had been but the velocity was almost unchanged in comparison with it before. On the other hand the water quality was a little better than it had been. Therefore in case of meeting the water level and velocity of the third grade water-quality that people can do water-friendly activity, the discharge and water quality to secure in-stream flow must be at least 0.688 $m^3/s$ and $BOD_5\;4.8 mg/{\iota}$ respectively. The water-quality prediction on the suggested eight scenarios was simulated in all satisfying the third grade water-quality.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

The Watershed Imperviousness Impact for the characteristic of stormwater runoff (유역의 불투수성에 따른 강우유출특성 비교)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Huh, Beom-Nyung;Choi, Ji-Yong;Kim, Yeong-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • The purpose of this study is to understand imperviousness impact for the characteristics of stormwater runoff and water temperature. The land-use map was used to estimate the watershed imperviousness(percent of impermeable area) and the RMS(Remote Monitoring System) was used to evaluate the stormwater runoff of watershed. This study was investigated for two streams(Jiam and Gongji) in Chunchon City. The detailed results of these studies are as follows; The imperviousness(%) of two watersheds(Jiam and Gongji) estimated by spatial analysis which is main function of GIS were 0.24% and 24.16%. So, Gongji watershed as urban area was about 100 times than jiam watershed as forest area. In case of rainfall of low intensity, stormwater runoff flowrate in higher imperviousness area(Gongji) was more than it in forest area(jiam). Also, The time to peak flowrate(Tp) was short in Gongji stream and the water temperature difference between Gongji and Jiam stream was about $4.4^{\circ}C$ in summer.

The Contamination of Sventoji River Bottom Sediments by Heavy Metals in Ukmerge, Lithuania

  • Valskys, Vaidotas;Motiejunas, Mindaugas;Ignatavicius, Gytautas;Sinkevicius, Stanislovas
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Bottom sediment pollution with heavy metals of the Sventoji River in Ukmerge, Lithuania using X-ray fluorescence spectrometry is analyzed in this article. During the research, qualitative and quantitative parameters of heavy metal concentrations and their distribution were investigated. This article presents obtained results of study, where bottom sediment samples were examined from both shores of the river of Sventoji. During this research, received data was treated using GIS software, which helped to interpolate the data of concentrations into the research polygon of the river. GIS software also helped to evaluate the urban runoff influence to the bottom sediment quality and exclude sources of pollution. The runoff dischargers which transport surface wastewater to the river were registered before sampling. At the mouth of streams, flowing into the river of Sventoji, additional samples were taken. After comprehensive river bottom sediment research there is a possibility to assess the extent of anthropogenic activity and its impact on the river ecosystem and human health.

Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin (낙동강 유역의 수질관리를 위한 유역모델링 적용 연구)

  • Jang, Jae-Ho;Ahn, Jong-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Necessity of Adjustment of the Jurisdiction of Local Governments based on Watershed (유역(流域)을 기초로 한 행정구역경계설정의 필요성)

  • Lee, Won-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.245-255
    • /
    • 2001
  • The management of water, both the quantity and the quality, has been one of the most important issues in the public investment and it is equally true in the field of sustainable development. Nevertheless, the jurisdiction of local governments has been delineated without much attention to the issue of the water management. In the planning of wide areas such as cities, countries, the metropolis, and the megalopolis, it is necessary to well arrange the geographical jurisdiction of local governments as a unit of region. The river water system, including small streams to large rivers, should be given its due share in the planning and jurisdictional delineation. The traditional concept of the local government's jurisdiction emphasizing the accessibility may be fading away. Instead, the efficiency of the public management would be the main concept in determining the jurisdiction of local governments. The river improvement, the waterworks, the sewage, the maintenance of water quality, the space of water recreation, are relatively important in the efficient management of that area. This paper argues for the equalization between the geographical jurisdiction of local governments and watersheds. To this end, I do case studies of the local governments areas such as Ri(里), Eup Myon(邑 面), Si Gun(市 郡), KyangyokSi Do(廣域市 道). The study interprets ARS will be one of the principles of land use and the reorganization of the local jurisdiction in the future as a geo-systematic and the eco-systematic criteria.

  • PDF

The Relationship between circulation of precipitation and urbanization (생태학적 측면에서 고찰한 빗물 순환체계와 도시화와의 관계)

  • 이은희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.24 no.4
    • /
    • pp.123-131
    • /
    • 1997
  • Since the industrial revolution. the growth of cities has been especially apid and the rate of ulbanization has been high. This urban development is encroaching on the natural environment because the cities are developed with not only residential estates, industrial area and buildings but also with infrastructure. The surface area of the city is sealed ,with pavement whereas nature is disturbed and modified. The hydrological cycle in the city is inf1uenced by the change of land use I. e., from forest to agricultural land, talc draining of wetlands and above all the increase of built-up areas. The surface retention and interception of precipitation in the city is reduced. because the surface area is now smooth and solid. The characteristics of the hydrological cycle in the city are increased runoff, reduced evapotranspiration and infiltraction . We have too much faith in technology although it may cause more unforseen problems. We build more river banks and 'emulation dams and straighten rivers and streams in order to protect ourselves from disasters.. However. the results of hose developments are often higher$.$ water levels, the disturbance of aquatic ecosystems and the reduction of biodiversity. Therefore, we should examine problems from the hydrological cycle in cities and study a natural system as close cities to nature as possible. This paper shows the problems caused by the hydrological cycle in the city. The ecology-oriented method and design must be used in order to protect our environment from dicturbance.

  • PDF

The Characteristics and Flora of Changwon and Nam Stream Located in Gyeongsangnam-do (경상남도 창원천과 남천의 관속식물상과 특성)

  • Park, Kyung-Hun;You, Ju-Han;Yoon, Young-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.12-27
    • /
    • 2010
  • The purpose of this study is carried out to present the raw data for restoring and maintaining an urban stream by objective surveying and analysing about flora in Changwon stream and Nam stream, Changwon-si, Gyeongsangnam-do, Korea. The results are as follows. The numbers of vascular plants were summarized as 248 taxa; 71 families, 184 genera, 220 species, 26 varieties and 2 forma. The numbers of vascular plants by streams were 202 taxa in Changwon stream and 206 taxa in Nam stream. The endemic plant was Salix pseudolasiogyne. The rare plants designated by Korea Foret Service were 2 taxa; Aristolochia contorta and Koelreuteria paniculata. The specific plants by floristic region were 12 taxa; Aphananthe aspera, Artemisia selengensis, Indigofera pseudotinctoria and so forth. The naturalized plants were 37 taxa; Ailanthus altissima, Amaranthus patulus, Amorpha fruticosa and so forth. The invasive alien plants designated by Ministry of Environment were 4 taxa; Ambrosia artemisiifolia var. elatior, Aster pilosus, Rumex acetocella and Solanum carolinense. The UI (Urbanized Index) and NI (Naturalized Index) were 13.6% and 18.3% in Changwon stream and 13.6% and 17.9% in Nam stream.