• Title/Summary/Keyword: urban scenario

Search Result 281, Processing Time 0.03 seconds

Mitigation of Insufficient Capacity Problems of Central Bus Stops by Controlling Effective Green Time (유효녹색시간 조정을 활용한 중앙버스정류장 용량 부족 완화 방안 연구)

  • Koo, Kyo Min;Lee, Jae Duk;Ahn, Se Young;Chang, Iljoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.35-50
    • /
    • 2022
  • After the introduction of the central bus lane system, bus traffic was prioritized. This resulted in improved trust from bus users. However, the low capacity at the central bus stop reduces traffic speed and punctuality. In addition, physical constraints are inevitable because the construction of central bus lanes and bus stops considers the city's road geometry. Therefore, this study attempted to optimize the effective green time of the traffic signal system at the entrance and exit of the central bus stop to remedy its insufficient operational capacity. The Transit Capacity and Quality of Service Manual and Korea Highway Capacity Manual were used as the analysis methodologies. The number of stop areas for central bus stops to be built was determined by excluding variable physical factors, and field survey data collected from nine randomly selected central bus stops currently installed in Seoul were used. A scenario analysis was conducted on the central bus stops with insufficient capacity by adjusting the effective green time, and the capacity of the central bus stop was set as the dependent variable. According to the results, 26.7 percent of the central bus stops with insufficient capacity can solve the problem of insufficient capacity. Therefore, the results of this study can be verified by improving the operation level, and it can be effective even if the number of central bus stops calculated by engineering is not guaranteed during the planning stage of the central bus stop. As the number of central bus stops is expected to increase further as the number of central bus stops increases, it is necessary to improve the number of central bus stops. Therefore, it is hoped that the results presented in this study will be used as basic data for the improvement plan at the operational level before introducing the physical improvement plan.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model (SWMM 분석을 통한 투수성 포장의 유출 저감 특성 평가)

  • Lin, Wuguang;Ryu, SungWoo;Park, Dae Geun;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES: This study aims to evaluate the runoff reduction with permeable pavements using the SWMM analysis. METHODS: In this study, simulations were carried out using two different models, simple and complex, to evaluate the runoff reduction when an impermeable pavement is replaced with a permeable pavement. In the simple model, the target area for the analysis was grouped into four areas by the land use characteristics, using the statistical database. In the complex model, simulation was performed based on the data on the sewer and road network configuration of Yongsan-Gu Bogwang-Dong in Seoul, using the ArcGIS software. A scenario was created to investigate the hydro-performance of the permeable pavement based on the return period, runoff coefficient, and the area of permeable pavement that could be laid within one hour after rainfall. RESULTS : The simple modeling analysis results showed that, when an impervious pavement is replaced with a permeable pavement, the peak discharge reduced from $16.7m^3/s$ to $10.4m^3/s$. This represents a reduction of approximately 37.6%. The peak discharge from the whole basin showed a reduction of approximately 11.0%, and the quantity decreased from $52.9m^3/s$ to $47.2m^3/s$. The total flowoff reduced from $43,261m^3$ to $38,551m^3$, i.e., by approximately 10.9%. In the complex model, performed using the ArcGIS interpretation with fewer permeable pavements applicable, the return period and the runoff coefficient increased, and the total flowoff and peak discharge also increased. When the return period was set to 20 years, and a runoff coefficient of 0.05 was applied to all the roads, the total outflow reduced by $5195.7m^3$, and the ratio reduced to 11.7%. When the return period was increased from 20 years to 30 and 100 years, the total outflow reduction decreased from 11.7% to 8.0% and 5.1%, respectively. When a runoff coefficient of 0.5 was applied to all the roads under the return period of 20 years, the total outflow reduction was 10.8%; when the return period was increased to 30 and 100 years, the total outflow reduction decreased to 6.5% and 2.9%, respectively. However, unlike in the simple model, for all the cases in the complex model, the peak discharge reductions were less than 1%. CONCLUSIONS : Being one of the techniques for water circulation and runoff reduction, a high reduction for the small return period rainfall event of penetration was obtained by applying permeable pavements instead of impermeable pavement. With the SWMM analysis results, it was proved that changing to permeable pavement is one of the ways to effectively provide water circulation to various green infrastructure projects, and for stormwater management in urban watersheds.

Experimental Study on the Fire Behavior in Double Deck Tunnel (복층터널내 화재특성에 대한 실험적 연구)

  • Park, Jin-Ouk;Yoo, Yong-Ho;Kim, Hwi-Seung;Park, Byoung-Jik
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • In the wake of expanding and overpopulating urban areas, traffic congestion has been worsening increasingly, causing huge economic losses. In a bid to effectively use the space of metropolitan areas, the construction and operation of a double deck tunnel has been on the rise. On the other hand, a lower height of a double deck tunnel is expected to generate more smoke and soot in a fire than other usual tunnels. Therefore, it is undesirable to apply the standard for fire intensity or smoke generation, which were designed for existing road tunnels. A part of an effort to propose a design fire curve that is useful for double deck tunnel, is intended to obtain and analyze the fire characteristics in a double deck tunnel through a real scale fire test. The test was conducted according to the fire scenario with one passenger car and two passenger cars; the monitored fire intensity was a maximum of 2.4 MW and 3.5 MW, respectively.

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.

Outlook Analysis of Future Discharge According to Land Cover Change Using CA-Markov Technique Based on GIS (GIS 기반 CA-Markov 기법을 이용한 토지피복 변화에 따른 미래 유출량 전망 분석)

  • Park, Jin-Hyeog;No, Sun-Hee;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.25-39
    • /
    • 2013
  • In this study, the change of the discharge according to the land cover change which acts as one of dominant factors for the outlook of future discharge was analyzed using SWAT(Soil and Water Assessment Tool) model for Yongdam and Daecheong Dam Watershed in the Geum River Basin. The land cover maps generated by Landsat TM satellite images in the past 1990 and 1995 were used as observed data to simulate the land cover in 2000 by CA-Markov serial technique and after they were compared and verified, the changes of land cover in 2050 and 2100 in the future were simulated. The discharge before and after the change of land cover by using input data of SWAT model was compared and analyzed under the A1B scenario. As a result of analyzing the trend in the elapses of year on the land cover in the Geum River Basin, the forest and rice paddy class area steadily decreased while the urban, bare ground and grassland classes increased. As a result of analyzing the change of discharge considering the future change of the land cover, it appeared that the discharge considering the change of land cover increases by 1.83~2.87% on the whole compared to the discharge not considering the change of land cover.

Estimating Effects of Climate Change on Ski Industry - The Case of Ski Resorts in South Korea - (스키산업에 기후변화가 미치는 영향 분석 - 한국의 스키장을 사례로 -)

  • Kim, Song-Yi;Park, Chan;Park, Jin-Han;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.432-443
    • /
    • 2015
  • Ski industry is sensitive to climate change. Many studies were carried out to learn the impact on climate change to large scale ski resorts around the world and the results are difficult to be applied to small scale ski resorts in general. So, this study targeted small ski resorts composing the ski industry of Korea and forecasted the impact of climate change. As a result, based on the mitigation efforts to minimize climate changes of the future (RCP 4.5), ski industry could be maintained at the same level of today. However, if climate change continues at the current trend (RCP 8.5), ski resorts will face loss of business days. If 100 days are considered as the minimum days to maintain the ski business, among 17 ski resorts in Korea, 3 ski resorts will be driven out of business by 2030s, 12 more ski resorts by 2060s and remaining 2 ski resort by 2090s will end the business. It means that smaller ski resorts has higher chance of facing difficulties in running business just as large scale ski resorts. Therefore, to sustain the ski business, technical and managerial efforts to adapt to the changing environment is needed.

Increasing Instream flow in Nonsancheon by Water Storage Securing Scenario of Upstream Reservoirs (상류 저수지군의 저수량 확보 시나리오에 의한 논산천의 유지유량 증가)

  • Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.99-109
    • /
    • 2009
  • This study was performed to evaluate the effect of increasing instream flow at Nonsancheon stream of Nonsan city by securing water storages in upstream reservoirs; Ge-ryong, Gyoung-cheon, Dae-dun, and Tab-jeong. The paralleled and cascaded upstream reservoir operations for 8 storage securing scenarios were considered to simulate daily streamflows at Nonsan station. Using Tab-jeong reservoir water storage, the DAWAST model's parameters were determined, and the verified result showed Nash-Schcliffe's coefficient of 0.666. Instream flows were analyzed to supply maximum $59.85Mm^3$ on an annually average from upstream reservoir storage securing scenarios. The storage securing set of 2 m heightened Ge-ryong, 5 m Dae-dun, and 1 m Tab-jeong showed that the additional secured water storages were $17.132Mm^3$ and instream flow at Nonsan station was increased to $2.183m^3/s$, 2 times of present condition.

  • PDF

Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea (서울 삼성 1분구에 대한 침수면적 GIS 데이터베이스 구축)

  • Oh, Minkwan;Lee, Dongryul;Kwon, Hyunhan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.981-993
    • /
    • 2016
  • This study explains the GIS database of flood inundation area developed for Samsung-1 Drainage Sector, Seoul, Korea. The XP-SWMM dual drainage model was developed for the study area, and the time series observed at the watershed outlet was used to obtain the watershed time of concentration and to calibrate the XP-SWMM model. The rainfall scenario was developed by dividing the 40 minute watershed time of concentration into two 20-minute time steps and then applying the gradually increasing 5 mm/hr interval rainfall intensity to each of the time step up to 200 mm/hr, which is the probable maximum precipitation of the study area. The developed rainfall scenarios was used as the input of the XP-SWMM model to obtain the database of the flood inundation area. The analysis on the developed GIS database revealed that: (1) For the same increment of the rainfall, the increase of the flooded area can be different, and this was caused by topographic characteristics and spatial formation of pipe network of the study area; (2) For the same flooded area, the spatial extent can be significantly different depending on the temporal distribution of rainfall; and (3) For the same amount of the design rainfall, the flood inundation area and the extent can be significantly different depending on the temporal distribution of rainfall.

Stability analysis of an existing utility tunnel due to the excavation of a divergence tunnel emerging from double-deck tunnel (복층터널의 분기터널 굴착에 따른 지하 공동구의 안정성 분석)

  • Nam, Kyoung-Min;Choi, Min-ki;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.231-248
    • /
    • 2017
  • Government plans to construct a double-deck tunnel under a portion of Gyeongbu Expressway that will solve traffic problems and could also be used as a flood storage facility. Divergence tunnels connect the main tunnel to the urban areas and their construction effects on adjacent structures at shallow depth need to be analyzed. This study primarily includes the numerical analysis of construction effects of divergence tunnels on utility tunnels. The utility tunnel was analyzed for three cases of volume loss applied to the divergence tunnel and two cases of the angle between main tunnel and divergence tunnel ($36^{\circ}$ and $45^{\circ}$). The results show that the more the volume loss was applied and the shorter the distance was between utility tunnel and divergence tunnel, the more the utility tunnel was affected in terms of induced displacements, angular displacement and stability. The worst scenario was found out to be the one where the angle between main tunnel and divergence tunnel was $36^{\circ}$ and the distance between divergence tunnel and utility tunnel was 10 m, resulting in the largest displacement and differential settlement at the bottom of the utility tunnel. A relationship between the angular displacement and the distance to diameter ratio was also established.