• Title/Summary/Keyword: urban runoff model

Search Result 282, Processing Time 0.035 seconds

A study on Watershed Model for Predicting the Runoff Characteristics of Urban Area (도시 지역의 유출량 변화 예측을 위한 유역 모델 연구)

  • Lee, Hye-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1089-1094
    • /
    • 2009
  • The SWMM (Storm Water Management Model) was applied to Princeton University campus, USA to predict the change of the runoff characteristics. Topography and infra structure of urban area are used in detail and watershed is made as form of regular square to improve the efficiency of data. Princeton campus was divided into 131 sub-basins and model input parameters were obtained from DEM (Digital Elevation Model), land use type, and campus management map, etc.. The model was validated based on the measured meteorological data. The validated model was used to analyze the change of the runoff characteristics according to urbanization, which are two different scenarios: 50% and 100% increase of impervious area. The increase of impervious area causes the increase of runoff, especially in the first-flush.

Analysis of Runoff Effect of Drainage System at Urban Watershed due to Urbanization (도시화에 따른 도시유역 배수계통의 유출영향분석에 관한 연구)

  • Seo, Kyu Woo;Heo, Jun Haeng;Cho, Won Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.80-90
    • /
    • 1997
  • The ILLUDAS and SWMM models were applied to the developing area of Dongsucheon for comparisons of the total runoff, peak discharge and travel time. For this purpose, the present and future urbanization rates were assumed 70% and 90%, respectively. The runoff analysis of two models has been performed based on 10, 20, 30 and 50 return periods and Huff's 4 quantiles for time distribution pattern of design rainfalls. As results, the total runoff based on Huff's pattern had an decreasing order of 1, 4, 3 and 2 quantiles for both models. The SWMM model showed that there were 4.3% increasing of the total runoff, 4.9% increasing of peak discharge, and 6.6% decreasing of travel time. Similarly, for ILLUDAS model, there were 7.3% and 9.2% increasing of total runoff and peak discharge, respectively and 9.1% decreasing of travel time.

  • PDF

Parameter Optimization for Runoff Calibration of SWMM (SWMM의 유출량 보정을 위한 매개변수 최적화)

  • Cho, Jae-Heon;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

Accuracy evaluation of 2D inundation analysis results of simplified SWMM according to sewer network scale (하수관망 규모에 따른 단순화 SWMM에 대한 2차원 침수분석결과의 정확성 평가)

  • Lee, Jung-Hwan;Kang, Seong-gyu;Yuk, Gi-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.531-543
    • /
    • 2019
  • Constructing a reliable runoff model and reducing model runtime are important in research of real-time urban flood forecasting to reduce the repetitive flood damage. Sewer networks in the major urban basin such as Seoul are vast and complex so that it is not suitable for real-time urban flood forecasting. Therefore, the rainfall-runoff model should be simplified. However, the runoff results due to the simplification of sewer networks can vary depending on the subjectivity and simplification method of the researcher and there is a significant difference especially in 2-D inundation analysis. In this study, the sewer networks in various urban basins with different numbers and distributions of sewer networks were simplified to certain criteria. The accuracy of the simplification model according to the sewer network scale is evaluated by 2-D inundation analysis. The runoff models of Gwanak, Sillim, and Dorimcheon, frequently inundated basins were simplified based on four simplification ranges due to the cumulative drainage area set as a criterion for calculating the simplification range. This study will be expected that the inundation result of simplification models estimated through the analysis can contribute to the construction of a reasonable and accurate runoff model suitable for real-time flood forecasting.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Urban Hydrologic Monitoring due to Internet Hydrologic Monitoring System (인터넷 수문관측시스템을 이용한 도시수문 모니터링)

  • Seo, Kyu Woo;Kim, Nam Gil;Na, Hyun Woo;Lee, In Rock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1321-1325
    • /
    • 2004
  • The continuous monitoring of the runoff in the small-scaled urban watershed and easily accessible experiment catchment is necessary to investigate the overall status of the development in the urban catchment and the varying aspects of the discharge characteristics due to the urbanization. However, the research on the management and the characteristics of the small-scaled model basin for discharge tests has not been actively performed up to now. This study selects the Dong-Eui university basin, which locates at Gaya-dong in Busan, as the experiment catchment to monitor the discharge rate in the urban watershed. EMS(DEMS, DATA-PCS EMS, mini rain gage & AWS(AWS-DEU, DATA-PCS AWS) monitoring system installed for the collection of hydrological data such as the rainfall and the waterlevel. This experiment catchment is the typical urban catchment and is under development, and it is possible to analyze the varying aspects of the discharge rate during and after the development.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (1) - Simulation of Flood Hydrograph using GIS-based Hydrologic Model (도시 소유역 배수펌프장 운영개선 방안 연구 (1) - GIS 기반 수문모형에 의한 홍수유출수문곡선의 재현)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.682-686
    • /
    • 2005
  • Recently some urban areas have been flooded due to heavy storm rainfalls. Though major causes of these floodings may be attributed to localized heavy rainfalls, other factors are related to urban flooding including deficiency of storm sewer network capacity, change of surface runoff due to covered open channels, and operational problems of storm drainage pump stations. In this study, hydrologic and hydraulic analysis of Sutak basin in Guri city were carried out to evaluate flooding problems occurred during the heavy storm in July, 2001. ArcView, a world most widely used GIS tool, was used to extract required data for the hydrologic analysis including basin characteristics data, concentration times, channel routing data, land use data, soil distribution data and SCS runoff curve number generation from digital maps. HEC-HMS, a GIS-based runoff simulation model, was successfully used to simulate the flood inflow hydrograph to Sutak pumping station.

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Evaluating characteristics of runoff responses by rainfall direction (호우 방향성에 의한 유역 유출응답 특성 평가)

  • Park, Changyeol;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.347-358
    • /
    • 2017
  • This study examined characteristic differences by the rainfall direction on the runoff responses. The directional characteristics of hydrological components in a basin were quantified by von Mises distribution. The runoff hydrograph was derived using the result of convolution integration of each distribution and this hydrograph was compared with GIUH model and observed data. As a result, it was found that runoff response by rainfall direction was more similar the observed rainfall-runoff data than the runoff result using GIUH model. These results implies that runoff modeling could be improved by considering directional components in hydrologic analysis. This study would be helpful to reduce uncertainties of hydrologic analysis considering a non-linearity of rainfall-runoff process by the rainfall direction.