• Title/Summary/Keyword: urban noise

Search Result 439, Processing Time 0.028 seconds

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

A Study of Environmental Conservation Based upon Pyeongtaek Citizens' Perceptions of the Environment (평택시민의 환경인식에 따른 환경보존에 관한 연구)

  • Lee, Chang-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.759-770
    • /
    • 2014
  • Pyeongtaek is one of the most dynamic and fastest growing cities in Korea. It is expected that Pyeongtaek will be fostered as one of the most technologically advanced cities with over one million residents in ten years, in transit from the current status of an urban and rural multi-functional city. As a consequence of the change, it is also anticipated to embrace problems related to environmental pollution. The current study investigates perceptions and attitudes of Pyeongtaek citizens towards the natural environment and the conservation of nature. A survey of the environmental perception was conducted with 700 people from the city. The data was analyzed by SPSS 12.0. Findings of the survey demonstrate that Pyeontaek citizens, overall, are interested in environmental issues; they also expect the city to be prosperous without nature destruction. Based upon the results, the study describes the current status of the areas which the citizens consider as most crucial; further, it makes practical suggestions for ways of conserving the environment for the future.

Public Nuisance and Aggregate Assessments of the Dangri Crushed Stone Quarry Busan, Korea. (부산직할시 산양사리 당리석산의 채석공해 및 쇄석골재 평가연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.41-53
    • /
    • 1983
  • The Dangri Crushed Stone Quarry is located in Dangridong, Busan City, and around the estuary of the Nagdong River. The quarry is considered to be a very promised one in the urban area from the standpoints of the assessment of the aggregate rank, the environmental impacts and the transportation distance. The crushed stones for aggregate of the quarry marks the higher rank in the gravity, the absorption ratio, the abrasion ratio, and the stability in comparison with the JISA 5005. The basement vibrations of the residential section in the vicinity of the quarry, which are arised by the millisecond blasting at the quarry site using the gelatin dynamites less than 39kg in weight, are measured to assess the vibration nuisance. The values of acceleration and the magnitudes are less than eight gals and O on the Richter scale respectively, the vibration nuisance thus can be ignored in such scales of the experiments. The traffic vibrations of the residential section are slightly susceptible. In the experiments, the traffic vibrations appears to be sensibler to the basement than the explosion vibration. The explosion noises in the experiments are not checked not only on the RION Sound Level Meter but also to our ears. The values of traffic noises also are in the safety values of the noise nuisance. The crush dust suspends in the air toward the upper valley in the opposite side of the residential area because of the influences of the sea breeze and the valley wind in the daytime, and the monsoon and the topographic disposition. the dust nuisance thus would not be remained in problem. The quarry is operated in the daytime only. The traffic dust in the residential area will be reduced by the faultless pavement and the careful driving. The elaborate survey on the ridges and peaks surrounded the quarry is recommended to prevent in advance the accidents of the rock slide. Moreover, it is required to make an advisory committee to develop the industry and to save the techniques. The most important matter is the accomodation between the attitude of the enterprising man for the social responsibility to the public nuisance and the cooperative spirit of the inhabitants for the industry.

  • PDF

Environmental Benefit Analysis for Railroad-related Projects (철도관련 사업에서의 환경편익 고려방안)

  • Nam, Doo-Hee;Huh, Hyun-Mu;Lee, Jin-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • Environmental impact is getting more attention in many feasibility studies for railroad-related projects and research items. For sustainable growth and green transportation, the benefits typically used for feasibility studies in railway-related projects, are composed mostly of economic criterions which is not considering growing attention on changing paradigm. Based on the analysis of current methodologies, improvements in estimating environmental impact especially on noise and pollution are suggested. Active steering bogie has been proposed to satisfy stabilizing and steering performance of railroad. This paper describes the feasibility study of the active steering bogie for a urban railway vehicle based on environment-related criteria.

Evaluating the Relationship between Place Attachment, Residential Evaluations and Satisfaction in a Medium-sized Romanian City (루마니아 도시에서의 장소애착, 거주성 평가, 만족도 간에 상관성 연구)

  • Dumitru, Adina;Garcia Mira, Ricardo;Maricutoiu, Laurentiu;Ilin, Corina
    • Journal of the Korean housing association
    • /
    • v.25 no.4
    • /
    • pp.31-38
    • /
    • 2014
  • The present research aimed at researching the relationships among place attachment, residential evaluations and satisfaction in a medium-sized post-communist Romanian city. Studies on post-communist cities are scarce and this research tried to fill that gap. This research is part of a government project that intended to significantly reform three medium-sized cities in the Western part of Romania and transform the urban space. Since the three of them are relatively small-sized and close spatially, the project intends to undertake massive reforms of the communications and services of the three cities. In this article, we report findings on the city of Hunedoara. A representative random sample was selected, and a total of 384 people were interviewed, with an overall reliability of the sample of 95%. The instruments used to gather the data were the Neighbourhood Perceived Environmental Quality Scale and a composite measure of place attachment was also included. The structure of each scale was checked using exploratory factor analysis. We tested alternative causal models using structural equations modelling. Our model showed a good fit to the data and explains satisfaction in the city adequately. Results show that satisfaction is directly predicted by the general evaluation of the city and by residential privacy. Residential noise and place attachment influence satisfaction indirectly. The results are discussed and some policy recommendations are formulated.

A MOM-based algorithm for moving force identification: Part I - Theory and numerical simulation

  • Yu, Ling;Chan, Tommy H.T.;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • The moving vehicle loads on a bridge deck is one of the most important live loads of bridges. They should be understood, monitored and controlled before the bridge design as well as when the bridge is open for traffic. A MOM-based algorithm (MOMA) is proposed for identifying the timevarying moving vehicle loads from the responses of bridge deck in this paper. It aims at an acceptable solution to the ill-conditioning problem that often exists in the inverse problem of moving force identification. The moving vehicle loads are described as a combination of whole basis functions, such as orthogonal Legendre polynomials or Fourier series, and further estimated by solving the new system equations developed with the basis functions. A number of responses have been combined, some numerical simulations on single axle, two axle and multiple-axle loads, being either constant or timevarying, have been carried out and compared with the existing time domain method (TDM) in this paper. The illustrated results show that the MOMA has higher identification accuracy and robust noise immunity as well as producing an acceptable solution to ill-conditioning cases to some extent when it is used to identify the moving force from bridge responses.

Indoor Positioning Using the WLAN-based Wavelet and Neural Network (WLAN 기반의 웨이블릿과 신경망을 이용한 위치인식 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.38-47
    • /
    • 2008
  • The most commonly used location recognition system is the GPS-based approach. However, the GPS is inefficient for an indoor or urban area where high buildings shield the satellite signals. To overcome this problem, this paper propose the indoor positioning method using wavelet and neural network. The basic idea of proposed method is estimated the location using the received signal strength from wireless APs installed in the indoor environment. Because of the received signal strength of wireless radio signal is fluctuated by the environment factors, a feature that is strength of signal noise and error and express the time and frequency domain is need. Therefore, this paper is used the wavelet coefficient as the feature. And the neural network is used for estimate the location. The experiment results indicate 94.6% an location recognition rate.

Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Yoo, Hwan-Hee;Jung, Won-Jo
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 2002
  • Accurate classification of water area is an preliminary step to accurately analyze the flooded area and damages caused by flood. This step is especially useful for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. Although SAR (Synthetic Aperture Radar) imagery with its own energy source is sensitive to the water area, its shadow effect similar to the reflectance signature of the water area should be carefully checked before accurate classification. Especially when we want to identify small flood area with mountainous environment, the step for removing shadow effect turns out to be essential in order to accurately classify the water area from the SAR imagery. In this paper, the flood area was classified and monitored using multi-temporal RADARSAT SAR images of Ok-Chun and Bo-Eun located in Chung-Book Province taken in 12th (during the flood) and 19th (after the flood) of August, 1998. We applied several steps of geometric and radiometric calculations to the SAR imagery. First we reduced the speckle noise of two SAR images and then calculated the radar backscattering coefficient $(\sigma^0)$. After that we performed the ortho-rectification via satellite orbit modeling developed in this study using the ephemeris information of the satellite images and ground control points. We also corrected radiometric distortion caused by the terrain relief. Finally, the water area was identified from two images and the flood area is calculated accordingly. The identified flood area is analyzed by overlapping with the existing land use map.

  • PDF

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

A Case Study of Deep Shaft Blasting for Reducing Ground Vibration in Urban Area (도심지의 대심도 수직구 발파에서 지반진동저감 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Jung, Min-Sung;Lee, Hyeung-Jin;Na, Gyeong-Min
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Domestic electronic detonators are used widely in many quarry and construction sites since its launch at 2013. In the case of SOC projects conducted in the city, most of them are designed in high-depth to reduce complaints. The high-depth excavation needs a long construction period and huge cost for building shaft and ventilation hole. Mechanical excavation method is applied when safety things are located nearby the site. Solidity of rock and machine's performance affect on the method's efficiency. So as the efficiency is getting lower, the construction period is extended, and the cost is increases as well. This case study is about changing the machine excavation method to the blasting method which is electronic detonator applied at the shaft construction site in the city. This is an example of using electronic detonators on the construction site in reducing blast-noise and vibration while meeting environmental regulatory standards.