• Title/Summary/Keyword: urban meteorology

Search Result 102, Processing Time 0.024 seconds

Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model (라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구)

  • Kim, Seogcheol;Yun, Jeongim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area (자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포)

  • Hong, Je-Woo;Hong, Jinkyu;Lee, Seong-Eun;Lee, Jaewon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

Effect of urbanization on the light precipitation in the mid-Korean peninsula (한반도 중부지역에서 약한 강수에 미치는 도시화 효과)

  • Eun, Seung-Hee;Chae, Sang-Hee;Kim, Byung-Gon;Chang, Ki-Ho
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.229-241
    • /
    • 2011
  • The continuous urbanizations by a rapid economic growth and a steady increase in population are expected to have a possible impact on meteorology in the downwind region. Long-term (1972~2007) trends of precipitation have been examined in the mid-Korean peninsula for the westerly condition only, along with the sensitivity simulations for a golden day (11 February 2009). During the long-term period, both precipitation amount (PA) and frequency (PF) in the downwind region (Chuncheon, Wonju, Hongcheon) of urban area significantly increased for the westerly and light precipitation ($PA{\leq}1mm\;d^{-1}$) cases, whereas PA and PF in the mountainous region (Daegwallyeong) decreased. The enhancement ratio of PA and PF for the downwind region vs. urban region remarkably increased, which implies a possible urbanization effect on downwind precipitation. In addition, the WRF simulation applied for one golden day demonstrates enhanced updraft and its associated convergence in the downwind area (about 60 km), leading to an increase in the cloud mixing ratio. The sensitivity experiments with the change in surface roughness demonstrates a slight increase in cloud water mixing ratio but a negligible effect on precipitation in the upwind region, whereas those with the change in heat source represents the distinctive convergence and its associated updraft in the downwind region but a decrease in liquid water, which may be attributable to the evaporation of cloud droplet by atmospheric heating induced by an increase in an anthropogenic heat. In spite of limitations in the observation-based analysis and one-day simulation, the current result could provide an evidence of the effect of urbanization on the light precipitation in the downwind region.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Investigation of Urban High Temperature Phenomenon in Summer using the High Density Ground Monitoring System in Daegu Metropolitan Area (지상 고밀도 관측 시스템을 이용한 대구의 여름철 고온현상 조사)

  • Kim, Sang-Heon;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1619-1626
    • /
    • 2014
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network in Daegu metropolitan city, the representative basin-type city in Korea, in summer, 2013. We used a total of 28 air temperature observation points data(16 thermometers and 12 AWSs). From the distribution of monthly average air temperature, air temperature at the center of Daegu was higher than the suburbs. Also, the days of daily minimum air temperature more than or equal to $25^{\circ}C$ and daily maximum air temperature more than or equal to $35^{\circ}C$ at the schools near the center of Daegu was more than those at other schools. This tendency appeared more clearly on the days of daily minimum air temperature more than or equal to $25^{\circ}C$. Also, the air temperature near the center of the city was higher than that of the suburbs in the early morning. Thus it was indicated that the air temperature was hard to decrease as the bottom of the basin. From these results, the influence of urbanization to the formation of the daily minimum temperature in Daegu was indicated.

Estimation of Air Temperature Changes due to Future Urban Growth in the Seoul Metropolitan Area (수도권지역 미래 도시성장에 따른 기온변화 추정)

  • Kim, Yoo-Keun;Kim, Hyun-Su;Jeong, Ju-Hee;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.237-245
    • /
    • 2010
  • The relationship between air temperatures and the fraction of urban areas (FUA) and their linear regression equation were estimated using land-use data provided by the water management information system (WAMIS) and air temperatures by the Korea Meteorology Administration (KMA) in the Seoul metropolitan area (SMA) during 1975 through 2000. The future FUA in the SMA (from 2000 to 2030) was also predicted by the urban growth model (i.e., SLEUTH) in conjunction with several dataset (e.g., urban, roads, etc.) in the WAMIS. The estimated future FUA was then used as input data for the linear regression equation to estimate an annual mean minimum air temperature in the future (e.g., 2025 and 2030). The FUA in the SMA in 2000 simulated by the SLEUTH showed good agreement with the observations (a high accuracy (73%) between them). The urban growth in the SMA was predicted to increase by 16% of the total areas in 2025 and by 24% in 2030. From the linear regression equation, the annual mean minimum air temperature in the SMA increased about $0.02^{\circ}C$/yr and it was expected to increase up to $8.3^{\circ}C$ in 2025 and $8.7^{\circ}C$ in 2030.

Analysis of Impact on Commuting Behavior in Urban and Rural Areas using Travel Diary Survey Data (가구통행실태조사 데이터를 이용한 도시지역과 농촌지역의 통근시간에 미치는 영향 비교 분석)

  • Jeon, Jeongbae;Park, Meejeong;Kim, Sangmin;Kim, Solhee;Kwon, Sung Moon
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.77-87
    • /
    • 2019
  • This study is to identify the factors affecting commuting time and modes in urban and rural areas using household traffic survey data. The findings indicated that commuting time using passenger car in rural areas was 1.6 times longer than those in urban areas. When citizen use public transportation, however, there was not much difference in commuting time in urban and rural areas. Among the various factors affecting commuting time in rural areas (13 factors have statistical significance), the most influential factors were that public transportation, managers and office workers, functional and device managers, and passenger car. In urban areas, the highly influential factors were public transportation and walking among the 16 affecting factors which have statistical significance. The commuting time in rural areas increased according to the occupation types, but the commuting time of full-time workers decreased. This phenomenom means that occupation groups with the full-time system prefer residential areas in the densely populated town.

Projections of Future Summer Weather in Seoul and Their Impacts on Urban Agriculture (미래 서울의 여름날씨 전망과 도시농업에의 영향)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2015
  • Climate departure from the past variability was projected to start in 2042 for Seoul. In order to understand the implication of climate departure in Seoul for urban agriculture, we evaluated the daily temperature for the June-September period from 2041 to 2070, which were projected by the RCP8.5 climate scenario. These data were analyzed with respect to climate extremes and their effects on growth of hot pepper (Capsicum annuum), one of the major crops in urban farming. The mean daily maximum and minimum temperatures in 2041-2070 approached to the $90^{th}$ percentile in the past 30 years (1951-1980). However, the frequency of extreme events such as heat waves and tropical nights appeared to exceed the past variability. While the departure of mean temperature might begin in or after 2040, the climate departure in the sense of extreme weather events seems already in progress. When the climate scenario data were applied to the growth and development of hot pepper, the departures of both planting date and harvest date are expected to follow those of temperature. However, the maximum duration for hot pepper cultivation, which is the number of days between the first planting and the last harvest, seems to have already deviated from the past variability.

Storm-Water CSOs for Reservoir System Designs in Urban Area (도시유역 저류형 시스템 설계를 위한 CSOs 산정)

  • Jo, Deok-Jun;Kim, Myoung-Su;Lee, Jung-Ho;Park, Moo-Jong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF

Estimation of Storage Capacity for CSOs Storage System in Urban Area (도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정)

  • Jo, Deok Jun;Lee, Jung Ho;Kim, Myoung Su;Kim, Joong Hoon;Park, Moo Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.