• Title/Summary/Keyword: urban infrastructure

Search Result 879, Processing Time 0.036 seconds

Analyses of Residents Satisfaction with the Differences in Green Space Infrastructure for Three Cities, Gwacheon, Uiwang, and Hanam (도시 공원녹지 환경의 차이에 따른 주민 만족도 변화 분석 -과천·의왕·하남시를 사례로-)

  • Park, Eun-Jin;Sung, Hyun-Chan;Seo, Jung-Young;Kang, Kyu-Yi;Sung, Mi-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.3
    • /
    • pp.60-70
    • /
    • 2007
  • Green space infrastructures for three cities, Gwacheon, Uiwang, and Hanam, were analyzed in terms of the area of urban parks per capita, the percentage of green space area, the area of green space per capita, and the percentage of vegetation cover in residential area, etc., which are commonly used as criteria for urban green space planning. The differences in green space infrastructure among these three cities were compared to the satisfaction level of residents for their green space. The area of parks per capita corresponded to the satisfaction level when Seoul Great Park in Gwacheon and Misa Park in Hanam were not included. Although these two huge parks accounted more than 90% of the area of urban parks in Gwacheon and Hanam, they serve more people from outside the cities and not likely visited by residents due to lacking of daily accessibility. The percentage of vegetation cover in residential area were considered to affect the satisfaction of residents for green space, whereas the total area of green space or the percentage of green space area in the cities was not related to the satisfaction level. It suggests that the distributions and accessibilities of green space and park service are more important for satisfaction than total green space area indicating urban sustainability.

Development of Coupled SWAT-SWMM to Evaluate Effects of LID on Flow Reduction in Complex Landuse (복합토지유역에서의 LID적용에 따른 유출량 저감효과 분석을 위한 SWAT-SWMM 연계모델 개발)

  • Woo, Won Hee;Ryu, Jichul;Moon, Jong Pill;Jang, Chun Hwa;Kum, Donghyuk;Kang, Hyunwoo;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.495-504
    • /
    • 2012
  • In recent years, urbanization has been a hot issues in watershed management due to increased pollutant loads from impervious urban areas. The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and water quality studies at watershed scale. However, the SWAT has limitations in simulating water flows between HRUs and hydrological effects of LID practices. The Storm Water Management Model (SWMM) has LID capabilities, but it does not simulate non-urban areas, especially agricultural areas. In this study, a SWAT-SWMM coupled model was developed to evaluate effects of LID practices on hydrology and water quality at mixed-landuse watersheds. This coupled SWAT-SWMM was evaluated by comparing calibrated flow with and without coupled SWAT-SWMM. As a result of this study, the $R^2$ and NSE values with SWAT are 0.951 and 0.937 for calibration period, and 0.882 and 0.875 for validation period, respectively. the $R^2$ and NSE values with SWAT-SWMM are 0.877 and 0.880 for validation period. Out of four LID scenarios simulated by SWAT-SWMM model, the green roof scenario was found to be most effective which reduces about 25% of rainfall-runoff flows.

Improvement and application of SWMM-ING for carbon reduction in green infrastructure (그린인프라시설의 탄소저감을 위한 SWMM-ING 개선 및 적용성 평가)

  • Young Jun Lee;Chaeyoung Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.335-345
    • /
    • 2023
  • In Korea, as part of the Green New Deal project toward a carbon-neutral society, it is necessary to build a climate-resilient urban environment to green the city, space, and living infrastructure. To this end, SWMM-ING was improved and the model was modified to analyze the carbon reduction effect. In addition, I plan to select target watersheds where urbanization is rapidly progressing and evaluate runoff, non-point pollution, and carbon reduction effects to conduct cost estimation and optimal design review for domestic rainwater circulation green infrastructure. In this study, green infrastructure facilities were selected using SWMM-ING. Various scenarios were presented considering the surface area and annual cost of each green infrastructure facility, and The results show that the scenario derived through the APL2 method was selected as the optimal scenario. In this optimal scenario, a total facility area of 190,517.5 m2 was applied to 7 out of 30 subwatersheds to achieve the target reduction. The target reduction amount was calculated a 23.50 % reduction in runoff and a 26.99 % reduction in pollutant load. Additionally, the annual carbon absorption was analyzed and found to be 385,521 kg/year. I aim to achieve additional carbon reduction effects by achieving the goal of reducing runoff and non-point pollution sources and analyzing annual carbon absorption. Moreover, considering the scale-up of these interventions across the basin, it is believed that an objective assessment of economic viability can be conducted.

The Consideration of Progressive Urban Park and The Possibility of Urban Agricultural Park (도시공원 진화상의 비판적 고찰을 통한 도시농업공원의 발전 가능성)

  • Yun, Hee-Jeong;Cho, Mi-Kyoung
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • Urban parks are progressing but are in chaos in the twenty-first century. Therefore the purposes of this study are to consider critically and classify the new paradigm of urban parks. Urban parks are one of the space products, and progressing aspects can be divided into three parts; supply, demand and market aspects. In the abstract, urban parks' progress represents process, openness or voidness, general and cultural ecology, productivity, experience program, identity or sense of place, carriers of urban regeneration, urban infrastructure, community space, multi-layered activity, active space, communication with urban space, tool of low carbon strategy and consilience. But urban parks have come under increased criticism about the long period development on trees growth, covering open space, limitation of general and cultural ecology, production, activity programs, identity and community space, visible urban regeneration, economic validity, urban sprawl, not using as the low carbon strategy, and finally negative consilience with contiguous fields. We collected these critical consideration about progressing urban parks, and proposed urban agricultural park as one of the alternative urban parks. This is closely connected with sustainable region development, low-carbon society, local food, well-being, Lohas paradigm and amenity of urban life.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Local Analysis of the spatial characteristics of urban flooding areas using GWR (지리가중회귀모델을 이용한 도시홍수 피해지역의 지역적 공간특성 분석)

  • Sim, Jun-Seok;Kim, Ji-Sook;Lee, Sung-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 2014
  • In recent years, the frequency and scale of the natural disasters are growing rapidly due to the global climate change. In case of the urban flooding, high-density of population and infrastructure has caused the more intensive damages. In this study, we analyzed the spatial characteristics of urban flooding damage factors using GWR(Geographically Weighted Regression) for effective disaster prevention and then, classified the causes of the flood damage by spatial characteristics. The damage factors applied consists of natural variables such as the poor drainage area, the distance from the river, elevation and slope, and anthropogenic variables such as the impervious surface area, urbanized area, and infrastructure area, which are selected by literature review. This study carried out the comparative analysis between OLS(Ordinary Least Square) and GWR model for identifying spatial non-stationarity and spatial autocorrelation, and in the results, GWR model has higher explanation power than OLS model. As a result, it appears that there are some differences between each of the flood damage areas depending on the variables. We conclude that the establishment of disaster prevention plan for urban flooding area should reflect the spatial characteristics of the damaged areas. This study provides an improved understandings of the causes of urban flood damages, which can be diverse according to their own spatial characteristics.

Developing Gardens in Urban Idle Space (도시유휴부지의 정원조성방안)

  • Choi, Jaehyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.327-335
    • /
    • 2021
  • We aimed to find new space types and characteristics for creating gardens in the city through the type of idle space in the city, present guidelines that can be used in creating gardens in the future, and establish basic data for expanding green infrastructure. As a result, we found that the idle space in the city was classified into four types, and it was determined that differentiation should be given to the creation of each type. The achievements of this study can be a potential source of urban ecosystem services that can provide community benefits and opportunities for urban regeneration through the redevelopment of the community and support the health and well-being of local residents. In addition, urban idle space can be a valuable resource as a green infrastructure that can be used to support the health of urban ecosystems and improve the quality of life of urban residents.

An Analysis on the Expert Opinions of Future City Scenarios (미래도시 전망 분석)

  • Jo, Sung Su;Baek, Hyo Jin;Han, Hoon;Lee, Sang Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.3
    • /
    • pp.59-76
    • /
    • 2019
  • This study aims to develop urban scenarios for future cities and validate the future city scenarios using a Delphi method. The scenarios of future city was derived from urban structure, land use, transportation, and urban infrastructure and development using big data analysis, environmental scanning techniques, and literature review. The Delphi survey interviewed 24 erudite scholars and experts across 6 nations including Korea, USA, UK, Japan, China, Australia and India. The Delphi survey structure was designed to test future city scenarios, verified by the 5-point Likert scale. The survey also asked the timing of each scenario likely happens by the three terms of near-future, mid-future and far-future. Results of the Delphi survey reveal the following points. Firstly, for the future urban structure it is anticipated that urban concentration continues and higher density living in global mega cities near future. In the mid-future small and medium size cities may decrease. Secondly, the land use pattern in the near-future is expected of increasing space sharing and mixed or layered vertical land-use. In addition underground space is likely to be extended in the mid-future. Thirdly, in the near-future, transport and infrastructure was expected to show ICT embedded integration platform and public and private smart transport. Finally, the result of Delphi survey shows that TOD (Transit Oriented Development) becomes a development norm and more emphasis on energy and environment fields.