• Title/Summary/Keyword: urban green space change

Search Result 88, Processing Time 0.021 seconds

A Preliminary Analysis of the Impact of Urban Green Spaces on the Urban Heat Island Effect Using a Temperature Map

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.675-680
    • /
    • 2010
  • Temperature is one of the main issues in climate change, and the urban heat island effect in highly developed urban areas is an important issue that we need to deal with. This study analyzed the extent of the cooling effects of urban green spaces. The study used a surface temperature map of Seoul. It found that the cooling effects of green space was observed within limited distances, although it varied a little depending on the parks investigated. The cooling effect distance ranged from 240m to 360m, averaging about 300m. It also found the size of an urban green space does not make much difference in cooling the surrounding areas. Although further investigation with diverse urban areas should be conducted on this matter, the results did imply that many small green spaces in the neighborhood are more effective than a single big green space in mitigating the heat island effects of cities.

Land Cover Change and Urban Greenery Prediction in Jabotabek by using Remote Sensing

  • Zain, Alinda-Medrial;Takeuchi, Kazuhiko;Tsunekawa, Atsushi
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.59-66
    • /
    • 2001
  • The tremendous growth of population and physical development in the largest urban agglomeration in Indonesia -the Jakarta Metropolitan Region, also known as Jabotabek (Jakarta, Bogor, Tanggerang, Bekasi)- has created many environmental problems, such as land use conversion, increasing urban temperature, water and air pollution, intrusion of seawater, and flooding. These problems have become more serious as the urban green space (trees, shrubs, and groundcovers) has decreased rapidly with the urbanization process. Urban green space directly benefits the urban environment through ameliorating air pollution, controlling temperature, contributing to the balance of the hydrological system, and providing space for recreation and relaxation. Because there is little hard data to support the claim of decreasing greenery in Jabotabek, it is necessary to measure the amount of urban green space. The paper describes the spatial analysis of urban green space within Jabotabek through the use of a geographical information system (GIS). We used GIS and remote sensing to determine land cover change and predicted greenery percentage. Interpretation of Landsat data for 1972, 1983, 1990, and 1997 showed that Jabotabek has experiences rapid development and associated depletion of green open space. The proportion of green open space fell by 23% from 1972 to 1997. We found a low percentage of urban green space in the center of Jakarta but a high percentage in fringe area. The amount of greenery is predicted by the Ratio Vegetation Index (RVI) model: predicted greenery (%) = [146.04] RVI - 134.96. We consider that our result will be useful for landscape planning to improve the environment of Jabotabek.

  • PDF

Estimation of Carbon Uptake for Urban Green Space: A Case of Seoul (도시 녹지 가치 평가를 위한 탄소 흡수량 추정 - 서울시를 대상으로 -)

  • Lee, Dong-Kun;Park, Jin-Han;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.607-615
    • /
    • 2010
  • Urban green space is often at the centre of the debate on urban substantiality because it provides functions of space, e.g. for wildlife, recreation, growing vegetables, psychological wellbeing, social interaction, etc. Traditionally, the various functions of urban green spaces clearly show that green spaces contain important values that contribute to the overall quality of urban life. After Kyoto protocol, it has becoming important to more accurately evaluate carbon uptake by urban green space. Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban green space. These studies have been limited by a lack of research on urban tree biomass and carbon uptake by soil, such that estimates of carbon storage in urban systems. This study calculate more accurately the amount of carbon uptake by urban green space. This study also complement the existing methods to estimate the urban green space carbon uptake. It has been studied how to evaluate carbon uptake function of urban green space. The surface area of urban green space increased 5% by complemented method and carbon uptake is also increased. Based on this result, the carbon uptake per capita was analysed and compared to the area of carbon uptake. And this study discussed the reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle. In conclusion, these results could contribute as preliminary data to policy makers when climate change adaptation strategy is established.

A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change (도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구)

  • Sung, Hyun-Chan;Hwang, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

A Study on the Method of Urban Planning for Adaptation to Climate Change (기후변화 적응을 위한 도시계획 방안 연구)

  • Lee, Sung Hee;Kim, Jong Kon
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • This study aims to understand abnormal climate caused by impacts of climate change and to suggest the direction of urban planning focusing on adaptation to climate change. The study consists of theory consideration and case study(Chicago, Philadelphia, Seattle). As a result, the main impacts of climate change faced by urban areas are heat wave, precipitation, and drought. To prevent these impacts, it is important to prepare methods of urban planning as followings: planning for land use, park and green considering the climate patterns, establishing and managing water resources systems similar to the nature, securing renewable energy resources, and transportation facilities and exterior space with proof against climate. It is especially necessary to introduce infrastructures related to storm water, green roof, shading tree planting, green space, and permeable pavement. Finally, in order to realize urban planning for adaptation to climate change, it is needed to make the detailed and specific goal and strategy for the climate change adaptation plan and to extend the scope from the goals to an action plan, a detailed plan, and a design guideline.

Exploration of Optimal urban green space using unused land - To improve green connectivity and thermal environment - (유휴지를 활용한 최적의 도시 녹지 공간 탐색 - 녹지연결성과 열 환경 개선을 목적으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Yoon, Eun-Joo;Park, Chae-Yoen
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.45-56
    • /
    • 2019
  • Urban green areas are generally composed of relatively small and fragmented patches, but it is a critical factor for the quality of an urban environment. They have positive effects such as increasing green connectivity, reducing runoff, and mitigating urban heat. But, there is a lack of urban greening plans that consider the comprehensive effects of green space in real urban areas. To fill this gap in this literature, this study identifies a planning model that determines the optimal locations for maximizing green areas' multiple effects(e.g., heat mitigation and enhancement of connectivity) by using unused lots. This model also considers minimizing costs using meta-heuristic optimization algorithms. As a results, we finds 50 optimal plans that considers two effects within the limited cost in Nowon-gu. The optimal plans show the trade-off effect between connectivity, heat mitigation and cost. They also show the critical unused land lots for urban greening that are commonly selected in various plans. These optimal plans can effectively inform quantitative effectiveness of green space and their trade-off. We expect that our model will contribute to the improvement of green planning processes in reality.

i-Tree Canopy-based Decision Support Method for Establishing Climate Change Adaptive Urban Forests (기후변화적응형 도시림 조성을 위한 i-Tree Canopy 기반 의사결정지원 방안)

  • Tae Han Kim;Jae Young Lee;Chang Gil Song;Ji Eun Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • The accelerated pace of climate crisis due to continuous industrialization and greenhouse gas emissions necessitates sustainable solutions that simultaneously address mitigation and adaptation to climate change. Naturebased Solutions (NbS) have gained prominence as viable approaches, with Green Infrastructure being a representative NbS. Green Infrastructure involves securing green spaces within urban areas, providing diverse climate adaptation functions such as removal of various air pollutants, carbon sequestration, and isolation. The proliferation of Green Infrastructure is influenced by the quantification of improvement effects related to various projects. To support decision-making by assessing the climate vulnerability of Green Infrastructure, the U.S. Department of Agriculture (USDA) has developed i-Tree Tools. This study proposes a comprehensive evaluation approach for climate change adaptation types by quantifying the climate adaptation performance of urban Green Infrastructure. Using i-Tree Canopy, the analysis focuses on five urban green spaces covering more than 30 hectares, considering the tree ratio relative to the total area. The evaluation encompasses aspects of thermal environment, aquatic environment, and atmospheric environment to assess the overall eco-friendliness in terms of climate change adaptation. The results indicate that an increase in the tree ratio correlates with improved eco-friendliness in terms of thermal, aquatic, and atmospheric environments. In particular, it is necessary to prioritize consideration of the water environment sector in order to realize climate change adaptive green infrastructure, such as increasing green space in urban areas, as it has been confirmed that four out of five target sites are specialized in improving the water environment.

  • PDF

Understanding the LST (Land Surface Temperature) Effects of Urban-forests in Seoul, Korea

  • Kil, Sung-Ho;Yun, Young-Jo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.246-248
    • /
    • 2018
  • Urban development and population have augmented the increase of impervious land-cover. This phenomenon has amplified the effects of climate change and increasing urban island effects due to increases in urban temperatures. Seoul, South Korea is one of the largest metropolitan cities in the world. While land uses in Seoul vary, land cover patterns have not changed much (under 2%) in the past 10 years, making the city a prime target for studying the effects of land cover types on the urban temperature. This research seeks to generalize the urban temperature of Seoul through a series of statistical tests using multi-temporal remote sensing data focusing on multiple scales and typologies of green space to determine its overall effectiveness in reducing the urban heat. The distribution of LST values was reduced as the size of urban forests increased. It means that changing temperature of large-scale green-spaces is less influenced because the broad distribution could be resulted in various external variables such as slope aspect, topographic height and density of planting areas, while small-scale urban forests are more affected from that. The large-scale green spaces contributed significantly to lowering urban temperature by showing a similar mean LST value. Both of concentration and dispersal of urban forests affected the reduction of urban temperature. Therefore, the findings of this research support that creating urban forests in an urban region could reduce urban temperature regardless of the scale.

A Study on Operational Systems & Planning Contents of Parks & Green Space Plan - Focused on London, New York, Berlin, Sydney, Seoul - (공원녹지기본계획의 운영체계 및 계획내용에 관한 연구 - 런던, 뉴욕, 베를린, 시드니, 서울 사례를 중심으로 -)

  • Chae, Jin-Hae;Zoh, Kyung-Jin;Kim, Seung-Ju;Hoh, Yun Kyeong;Hwang, Ju-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • Recent trends in urban policies show the increasing importance of urban parks. Moreover the park policy and planning are increasingly important for the good urban park system. Comparative studies in the operational system and planning contents of the parks and green space plans of the major cities would be timely and meaningful. This study aims to provide a comparative study in operational system and planning contents of the Parks and Green Space Master Plan at urban scale. Sites include London, New York, Berlin, Sydney and Seoul. Analyses are focused on the master plans and strategy reports of each city. Frameworks for analysis are divided into operational system and planning contents. The results are as follows. First, the Parks and Green Space Plans as an open space planning linked to related resources would contribute to both integrated resources management and practice of the fairness. Second, evolution from quantity to quality of the parks and green space plan enhances revitalization and regeneration. Third, shift from the 'supply oriented plan' to 'need based plan' model provides flexible planning model to meet the demographic change, trend change, preference and use. Fourth, planning agents, enlarged opportunities for participation within each phase, diversified of the participants lead the changes from the passive participation to active one. In order to improve the practicability of the parks and green space master plan, a flexible planning strategy including social awareness changes and park governance is required.

Application of UAV for Vegetation Monitoring in Urban Green Space (도시 녹지공간 식생 모니터링을 위한 무인항공기 활용방안)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • With the diversification of research using UAV(Unmanned Aerial Vehicle)s, the possibility of remote sensing research for urban green spaces is increasing. UAVs can be used as an investigation method to monitor the successful construction of the park and the planting of vegetation since its creation. This study was carried out to investigate UAVs utilization of urban green space monitoring in Dosol Square. It was photographed three times on May 21, July 13, and September 16, 2018 using DJI Phantom3 pro, Inspire2, and Parrot Sequoia multispectral camera. Orthographic images were overlaid on the planting plan of the site and the construction results were checked, the change of vitality of the plantation area was analyzed by NDVI(Normalized Difference Vegetation Index) and SAVI(Soil Adjusted Vegetation Index). As a result, it was confirmed that the UAVs are very effective for surveying the view of the urban green space after the construction and recording the results, which can be grasped quantitatively by overlaying the planting plan map. UAVs are more likely to be used in terms of monitoring vegetation vitality. It is interpreted that SAVI is better than NDVI in the green space just after composition. Chionanthus retusus and Pinus strobus were analyzed for their low level of vitality, and partially damaged and their vitality was lowered. In addition, there was difficulty in grass planting area and flower garden due to drainage and summer drought problems. In the future, it is expected that orthoimage and multispectral data using UAVs will be useful in the early vegetation monitoring and management field of urban green spaces.