• Title/Summary/Keyword: urban excavation

Search Result 285, Processing Time 0.023 seconds

Low-cost Method for Preventing Noise from Urban Excavation Construction (도심 굴착공사에서의 소음 저감방안)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 2002
  • Den have been many construction projects in urban n We have a lot of problems which have to be solved especially against residence complaints existing building damage due to construction worts. We sometimes have to pay a certain amount of cost to solve the above problem, not in planning. In addition to, we have to suffer from work delay due to confronting problem. Almost all of these are due to blasting work to break solid rock to be excavated. Therefore, this study is focused on finding out how to reduce noise more cheaply. Four cases(4) as cheaper but more effective way have been tested to find out which way of local fence will have better moise reduce function in a field site. Where five(5) large breakers are being operated. It is concluded that more form and shape of local movable panel than the site of panel can be influenced on noise reduce.

A Study on the Units of Measuring Scale in Hwangnyongsa Temple Planning (황룡사 가람계획 척도 연구)

  • Kim, Sookyung
    • Journal of architectural history
    • /
    • v.25 no.4
    • /
    • pp.65-73
    • /
    • 2016
  • This paper aimed to identify the units of measuring scale in Hwangnyongsa temple planning with the published excavation survey reports. Hwangyongsa temple site was planned under Silla Capital's urban planning in 6~7C, its full size was $800{\times}800$, and main temple was $400{\times}515$ of Goguryeo's system of measurement. Main hall was located in the center of Hwangnyongsa temple site, and its location could be seen that there was the arrangement of main temple divided into 3 : 2. Building plan measuring units proved to be 351~356mm and 294~ 296mm by analyzing measured data of remains. Lecture hall and Wooden pagoda were rebuilt by using the ancestors' units of measuring scale again and Bell hall was not planned by Tang's system of measurement in middle of 8C. In this respect, it would be important to have a deliberate attitude and lay down stereotypes on research of the units of measuring scale in ancient architecture.

A Case Study on the Shallow Overburden Tunnelling with a Frame Slab Method (프레임 슬래브 공법을 적용한 천층터널의 시공법 연구)

  • Jung, Myung-Keun;Park, Chi-Myeon;Lee, Ho;Kim, Seung-Ryull
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.113-120
    • /
    • 2001
  • A frame slab method has been proved as a possible and profitable construction solution for the urban tunnels with very shallow overburden and the excavation from the surface Is strictly limited. Since this method allows only a small amount of construction activities in the ground surface, the disturbances to the public and the surface traffic can be drastically reduced compared with the ordinary cut-and-cover method. The construction sequences of the method and the some of critical cautions needed are described in detail. Also a comprehensive numerical analysis including 2-D and 3-D analysis have been performed to verify the stability of the ground during the construction. It is revealed from this study that the frame slab method can be a quite successful solution for the shallow overburden tunnelling in urban area.

  • PDF

Development of An Internet-Based Tunnel Construction Risk Management System (Internet 기반의 터널 시공 위험도 관리 시스템 개발)

  • 유충식;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.679-686
    • /
    • 2002
  • A substantial portion of the cost of a tunnelling project in urban environments is, therefore, devoted to prevent ground movement. Therefore, prediction of ground movements and assessment of risk of damage to adjacent buildings has become an essential part of the planning, design, and construction of a tunnelling project in the urban environments. An internet-based tunnelling-induced ground movements and building damage assessment system (IT-TURIMS) was developed and implemented to Daegu Metro Subway Line tunnel construction project in Korea. This paper describes the concept and implementation of IT-TURIMS. Practical significance of tunnelling risk assessment is also discussed.

  • PDF

Investigation of divergence tunnel excavation according to horizontal offsets between tunnels

  • Hong, Soon-Kyo;Oh, Dong-Wook;Kong, Suk-Min;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 2020
  • In most cases in urban areas, construction of divergence tunnel should take into account proximity to existing tunnel in operation. This inevitably leads to deformation of adjacent structures and surrounding ground. Preceding researches mainly dealt with reinforcing of the diverging section for the stability including the pillar. This has limitations in investigating the interactive effects between existing structures and surrounding ground due to the excavation of the divergence tunnel. In this study, the complex interactive behavior of pile, the operating tunnel, and the surrounding ground according to horizontal offsets between the two adjacent tunnels was quantitatively analyzed based on conditions diverged from operating tunnel in urban areas. The effects on ground structures confirmed by analyzing the ground surface settlements, pile settlements, and the axial forces of the pile. The axial forces of lining in operating tunnel investigated to estimate their impact on existing tunnel. In addition, in order to identify the deformation of the surrounding ground, the close range photogrammetry applied to the laboratory model test for confirming the underground displacements. Two-dimensional finite element numerical analysis was also performed and compared with the results. It identified that the impact of excavating a divergence tunnel decreased as the horizontal offset increased. In particular, when the horizontal offset was larger than 1.0D (D is the diameter of operating tunnel), the impact on existing structures further reduced and the deformation of surrounding ground was concentrated at the top of the divergence tunnel.

Improvement of SOC Structure Automated Measurement Analysis Method through Probability Analysis of Time-History Data (시계열 데이터의 확률분석을 통한 SOC 구조물 자동화계측 분석기법 개선)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han;Jee-Seung Chung;Jung-Ho Kim;Bong-Chul Joo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.679-684
    • /
    • 2023
  • Currently, large-scale and deep-depth excavation construction is being carried out in the vicinity of structures due to overdensity in urban areas in Korea. It is very important to secure the safety of retaining structures and underground structures for adjacent excavation work in urban areas. The safety of facilities is managed by introducing an automated measurement system. However, the utilization of the results of the automated measurement system is very low. Conventional evaluation techniques rely only on the maximum value of the measured data, and can overestimate abnormal behavior. In this study, we intend to improve the analysis technique for the automation measurement results. In order to identify abnormal behavior of facilities, a time-series analysis method for automated measurement data was presented. By applying a probability statistical analysis technique to a vast amount of data, highly reliable results were derived. In this study, the analysis method and evaluation method that can process the vast amount of data of facilities have been improved.

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Evaluation on Damage Effect according Displacement Behavior of Underground Box Structure (지하박스구조물의 변위거동에 따른 손상영향 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.565-570
    • /
    • 2024
  • Recently, due to adjacent excavation work such as new buildings and common tunnel expansion concentrated around the urban railway, deformation of the underground box and tunnel structure of the urban railway built underground has occurred, and as a result, repair and reinforcement work is frequently carried. In addition, the subway is responsible for large-scale transportation, so ensuring the safety and drivability of underground structures is very important. Accordingly, an automated measurement system is being introduced to manage the safety of underground box structures. However, there is no analysis of structural damage vulnerabilities caused by subsidence or uplift of underground box structures. In this study, we aim to analyze damage vulnerabilities for safety monitoring of underground box structures. In addition, we intend to analyze major core monitoring locations by modeling underground box structures through numerical analysis. Therefore, we would like to suggest sensor installation locations and damage vulnerable areas for safety monitoring of underground box structures in the future.

New Construction and Design Method of Two Arch Tunnel (최신 투 아치 터널의 굴착 공법과 구조 및 설계)

  • Yun, Seok-Ryul;Kwon, Oh-Hyun;Seo, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.938-945
    • /
    • 2004
  • In order to cope with ever growing traffic flow and complexity in the urban area, construction demands for expanding and realigning of existing urban roads and massive development of underground space within the urban area are in its increasing trend, it is fact that, mainly due to lack of statistical data accumulation through real construction, technology and construction practice to support such demands can hardly be said to have been established enough and leave many things still to be developed. These circumstances therefore came to motivate me to get into a study for a particular subject of "Design Basics for Closely Neighbored Twin Tunnel" among others, and also to put forward subjects required to be further studied in this connection in the future as follows: 1) To make a new economical design model for closely neighbored twin tunnel not only to make a drain for center perfect but also a tunnel construction safe. 2) Further efforts should be exerted for establishment of general standards for design and construction of various types of large cross-section tunnels including Twin structure.

  • PDF

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.