• Title/Summary/Keyword: urban excavation

Search Result 291, Processing Time 0.022 seconds

Urban Excavation and Observational Method (도심지 지하굴착 및 정보화 시공)

  • Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-14
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed an urban excavation case and introduce observation method for case of damage behavior in urban excavation.

  • PDF

Case Study of Damage Behavior in Urban Excavation (도심지 흙막이 굴착시 손상거동에 대한 대책공법사례)

  • Kim, Man-Ha;Chae, Young-Su;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.330-335
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed a countermeasure method for case of damage behavior in urban excavation.

  • PDF

The Retaining wall Design nearby Large Excavation for Developed Underground in Urban Area. (도심지 지하공간개발을 위한 대형 대심도 근접굴착 흙막이 설계사례)

  • Shin, Yung-Wok;Park, Jong-Min;Lee, Sung-Hwan;Lee, Bong-Yeol;Lee, Jung-Young;Chang, Huck-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.49-83
    • /
    • 2005
  • ESCP Project showed an urban excavation case and introduced design method for case of Soil-Structure behavior in urban excavation. In this case, a retaining structures design to analysis the behavior of retaining wall and adjacent structures in urban excavations was applied by using a Elasto-plastic beam and limit Equilibrium analysis and soil-structure interaction analysis. Reliable design of earth retaining structures and the ground adjacent to braced wall in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an imprtant issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary.

  • PDF

Analysis of accidents due to Urban Ground Excavation (지반굴착공사로 인한 사고사례 분석)

  • Seong, Joo-Hyun;Yoon, Jong-Ku;Jung, Soo-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1087-1094
    • /
    • 2010
  • With recent growth of population and industry, urban development grows into grand scheme of excavation and construction in urban area. As the development progress advanced, the developments get large and deepen. With a progress of technology development in geotechnical engineering in Korea, most our grand scheme of projects follows great progress. On the other hand, some excavation in construction site caused direct or indirect event that affects the adjacent or surrounding structures by excavation from time to time. This event usually happens around residential and commercial area where underground tunnel, subway station, commercial building, and high-rises excavation site is, could lead great damage on economy as well as personal injury or human casualties. In order to prevent this event, the study has to be done with analysis on various events of excavation and its cause. In this paper, the research has collected the various excavation events and their causes to analyze on each site and event to define emphasis on surrounding environment.

  • PDF

SOME PROBLEMS AND REMEDIAL MEASARES OF BRACED EXCAVATION IN URBAN AREAS (도심지 지하굴착의 문제점과 개선방향)

  • 김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.158-168
    • /
    • 1994
  • This report describes aspects of recent braced excavation constructed in built up areas where adjacent buildings or underground utilities are likely to be subjected to settlement and damages. Trends and choice of earth retaining structures for deep excavation are present, and some desigen and construction techniques are introduced in order to minimise possible adverse effects to the urban environment. Some problems in design and construction of braced excavation in urban area are closely examined and remedial measrures are proposed.

  • PDF

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song;Bitnarae Kim;Ahyun Cho;Juyeon Jeong;Dongkweon Lee;Myung Jin Nam
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.109-119
    • /
    • 2023
  • Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.

Deep Excavation-induced Building and Utility Damage Assessment (도심지 깊은굴착시 주변 건물 및 매설관 손상평가)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.85-95
    • /
    • 2002
  • A substantial portion of the cost of deep excavations in urban environments is devoted to prevent ground movements and their effects on adjacent buildings and utilites. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents damage assessment techniques for buildings and utilities adjacent deep excavation, which can be readily used in practice.

  • PDF

Stability of the Innovative Prestressed wale System Applied in Urban Excavation (도심지 굴착에 적용된 IPS 띠장의 안정성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Jang, Ho-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • The stability of innovative prestressed wale system applied in urban excavation was investigated. The IPS is a wale system prestressed by tension of steel wires. The IPS consists of steel wires, H-beam support and wale. The IPS provides a high flexural stiffness to resist the bending moment caused by earth pressures. And the IPS transmits earth pressures due to excavation to corner struts. The IPS provides a larger spacing of support, economical benefit, construction easiness, good performance and safety control. This paper explains basic concept and mechanism of the IPS and presents the measured performances of the IPS applied in urban excavation. In order to investigate applicability and stability of the IPS in urban excavation, observations and measurements in site were performed. The IPS applied in urban excavation was performed successfully. The results of the field instrumentation were presented. The measured performances of the IPS were investigated. And behavior of the wall and corner struts was investigated.

The First Case Study of TBM Pre-Excavation Type 2-Arch Tunnel in Korea (국내 최초 TBM선굴진 2-Arch터널 설계사례 연구)

  • Hyung-Ryul Kim;Sang-Jun Jung;Jun-Ho Kang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.255-264
    • /
    • 2023
  • As the demand for urban underground space increases recently, urban tunnel planning is actively progressing. In the urban area, a underground station is planned in consideration of the living environment of residents, and 2-arch tunnel is applied for the stability of existing structures and reduction of environmental damage. However, since the depth of weak rock mass is deeply distributed in the urban area due to severe weathering, careful planning is required to secure tunnel stability. In addition, if TBM mechanical excavation is applied as the main tunnel excavation method considering the composite ground in urban area, the construction connectivity with the 2-arch tunnel of the NATM concept may be deteriorated. In this study, the design case of applying TBM pre-excavation type 2-arch tunnel for the first time in Korea was mainly described. The main considerations for the segment design of TBM pre-excavation type 2-arch tunnel were explained for side tunnels. Also, a stability analysis was conducted to verify the effectiveness and adequacy of the TBM pre-excavation type 2-arch tunnel.

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF