• Title/Summary/Keyword: urban deep excavation

Search Result 66, Processing Time 0.026 seconds

A Study on the Rapid Construction Method for Ground Excavation (지반굴착을 위한 급속시공 방안 연구)

  • Sim, Jae-Uk;Son, Sung-Gon;An, Hyung-Jun;Kim, In-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1251-1258
    • /
    • 2008
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.

  • PDF

An Experimental Investigation for the Effects of Pre-loading on the Ground Movement in Sand (선행하중 적용시 흙막이 벽체 및 주변지반의 거동에 관한 굴착모형실험)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.15-26
    • /
    • 2003
  • Urban excavation requires highly reliable prediction technique for the design and construction of earth retaining structure in order to protect adjacent structures around deep excavation. Application of the pre-loading of bracing for deep excavation has been reported, and the known beneficial effects are not fully understood and recognized by many practitioners. Model tests have been carried out to evaluate the efficiency of pre-loading system in reducing ground settlement as well as prediction of structural damage around excavation in sand. The test results revealed that the applied pre-loading of 50% and 70% showed about 20% of reduction in horizontal wall displacement and 30∼40% reduction in ground settlement. Also, bracing forces and earth pressure distribution behind the wall have been monitored during pre-loading at various excavation stages.

Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation

  • Liu, Xinrong;Liu, Peng;Zhou, Xiaohan;Wang, Linfeng;Zhong, Zuliang;Lou, Xihui;Chen, Tao;Zhang, Jilu
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Urban deep excavation will affect greatly on the deformation of adjacent existing buildings, especially those with shallow foundations. Isolation piles has been widely used in engineering to control the deformation of buildings adjacent to the excavation, but its applicability is still controversial. Based on a typical engineering, numerical calculation models were established and verified through monitoring data to study the influence characteristics of isolation piles on the deformation of existing shallow foundation buildings. Results reveal that adjacent buildings will increase building settlement δv and the deformation of diaphragm walls δh, while the isolation piles can effectively decrease these. The surface settlement curve is changed from "groove" type to "double groove" type. Sufficiently long isolation pile can effectively decrease δv, while short isolation piles will lead to a negative effect. When the building is within the range of the maximum settlement location P, maximum building rotation θm will increase with the pile length L and the relative position between isolation pile and building d/D increase (d is the distance between piles and diaphragm walls, D is the distance between buildings and diaphragm walls), instead, θm will decrease for buildings outside the location P, and the optimum was obtained when d/D=0.7.

Lateral Wall Movements and Apparent Earth Pressures for In-situ Walls during Deep Excavations in Multi-Layered Grounds with Rocks (암반을 포함한 다층토 지반에서의 깊은 굴착시 흙막이벽체의 수평변위 및 겉보기토압)

  • 유충식;김연정
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.43-50
    • /
    • 2000
  • This paper presents the measured performance of in-situ walls using the measured data collected from various deep excavation sites in urban area. A variety of in-situ wall systems from 57 sites were considered, including H-pile walls, soil cement walls, cast-in-place pile walls, and diaphram walls. The examination included lateral wall movements as well as apparent earth pressure distributions. The measured data were thoroughly analyzed to investigate the effects of various components of in-situ wall system, such as types of wall and supporting system, on the lateral wall movement as well as on the apparent earth pressure distribution. The results wee then compared with the current design/analysis methods, and information is presented in chart formes to provide tools that can be used for design and analysis. Using the measured data, a semi-empirical equation for predicting deep excavation induced maximum lateral wall movement is suggested.

  • PDF

Deep Foundations for High-Rise Buildings in Hong Kong

  • Sze, James W.C.
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.261-270
    • /
    • 2015
  • Hong Kong is a renowned small city with densely placed skyscrapers. It is no surprise that heavy duty or even mega foundations are built over the years to support these structures. To cope with the fast construction pace, several heavy deep foundation types have been widely adopted with some prescribed design rules. This Paper has selected two commonly adopted but distinctive foundation types, namely large diameter bored piles and percussive steel H-piles to illustrate the special design and construction considerations related to these pile types in related to local context. The supervision requirement in related to foundation works for which again may be unique in Hong Kong will also be highlighted. A case history is also discussed in the later part of the Paper to illustrate the application of one of these foundations and to highlight the importance of considering foundation design and basement excavation method in a holistic manner.

A Case Study of Building Damage Risk Assessment Due to the Strutted Excavation: Design Aspects (지보굴착에 따르는 인접건물의 손상위험도 평가사례: 설계단계)

  • Lee Sun-Jae;Song Tae-Won;Lee Youn-Sang;Song Young-Han;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.99-112
    • /
    • 2005
  • The ground excavation in the urban area induces in general ground movement and subsequent damage on the adjacent building structures. So the essentials in the designing stage are the prediction of ground movement induced by the ground excavation and the damage risk assessment of buildings adjacent to the excavation. A propsed prediction method of the ground movement induced by the strutted excavation has been studied with due consideration of the existing ground movement prediction methods. A building damage risk assessment method based on the angular distortion and the horizontal strain derived from the green-field ground movement is also proposed. These methods have been applied successfully in the on-going deep excavation project in Singapore.

A Case Study on Reinforcement Method by Excavation Adjacent to the Subway Tunnel using Numerical Analysis (수치해석을 통한 지하철 구조물 인접 굴착에 따른 보강공법 적용사례연구)

  • Byun, Yo-Seph;Jung, Kyoung-Sik;Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.5-11
    • /
    • 2011
  • Recently, large and deep excavations are increasing. The damage of adjacent structures due to excavation has steadily increased with increasing construction demand. Especially in urban development and poor conditions, the excavation adjacent to the subway structures has caused a lot of problems. This paper was reviewed that the underground excavation and reinforcement of the status process through a case study on the field. And stability analysis through the case study evaluates applicability for reasonable reinforcement method by numerical analysis. As a result, the strata distribution condition of all 16 sites consisted of landfill from the top and distributed in the order of deposits, weathered soils, weak rock from the bottom. Also, when proceeding the excavation adjacent to structures, the location of site and layer conditions have highly effect on the results of the construction. Therefore, this study was applied reinforcement method to protect damage by excavation. Displacement and settlement were within allowable criterion and hence, stability of structure was analyzed as safe.

Case Study of Braced Wall System with High-strength Steel Pipe Strut (고강도 강관파이프 스트러트 흙막이공법 사례연구)

  • Shin, Jae-Min;Park, Hyun-Young;Joo, Jin-Kyu;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF