• Title/Summary/Keyword: urban canopy

Search Result 117, Processing Time 0.028 seconds

Development and Feasibility of Indicators for Ecosystem Service Evaluation of Urban Park (도시공원의 생태계서비스 평가지표 개발 및 측정가능성 검토)

  • Kim, Eunyoung;Kim, Jiyeon;Jung, Hyejin;Song, Wonkyong
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.227-241
    • /
    • 2017
  • A human in urban areas has depended on ecosystem for well-being, so it is important to evaluate urban ecosystem services which contribute significantly to human well-being. In this study we classified ecosystem functions and set indicators used for evaluating ecosystem services of urban park by Delphi method. As a result, it derived 12 items and 14 indicators of ecosystem services to evaluate them such as vegetable garden, canopy cover, biodiversity, and educational programs. Based on the derived evaluation indicators, the feasibility of the indicators was examined by applying to two urban parks, Maetan park and Seoho-Ggotme park, in Suwon City. We also suggested strategies to improve each ecosystem services based on the results of evaluation. It is significant to recognize unknown services in urban parks. The results can be used for improving urban ecosystem services consistently in response to current rapid urbanization. In the future, the city should make a master plan on ecosystem service on urban area, beyond urban park, considering both of quality and quantity.

The Numerical Prediction of the Micro Climate Change by a Residential Development Region

  • Oh, Eun-Joo;Lee, Hwa Woon;Kondo, Akira;Kaga, Akikazu;Yamaguchi, Katsuhito
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.529-539
    • /
    • 2003
  • We developed a numerical model that considered the influences on the thermal environment of vegetation, water surfaces and buildings to predict micro climatic changes in a few $\textrm{km}^2$ scales; and applied this model to the Mino residential development region in Osaka Prefecture by using a nested technique. The calculated temperatures and winds in the residential development region reasonably agreed with the observed ones. We then investigated the influences on the thermal environment of the construction of a dam, the change of the green coverage rate. The results obtained from the numerical simulations were qualitatively reasonable.

A Study on Urban Tree Canopy Artificial Intelligence Model for Carbon Neutrality in the Face of Climate Crisis (기후 위기에 맞서 탄소중립을 위한 도시 나무 캐노피 인공지능 모델 연구)

  • Jung, Jisun;Kim, Kyungbaek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.529-531
    • /
    • 2022
  • 기후 위기가 대두되며 탄소중립에 많은 관심이 쏟아지고 있다. 탄소중립을 실천하기 위한 여러 가지 방법 중 도시의 수목을 관리하는 것은 탄소배출 저감, 대기질 개선 등의 환경적인 긍정적 효과를 얻을 수 있다. 수종별 온실가스 흡수량과 흡수 계수에는 차이가 있지만 도시 나무 캐노피를 증가시키면 온실가스 흡수량도 증가한다. 본 논문은 탄소정보공개 프로젝트(CDP)에서 제공하는 데이터를 기반으로 도시의 녹지 지대를 구글 지도(Google Map) 위성사진을 통해 찾아내고 지니 계수(Gini Coefficient)를 통해 도심 녹지 균형을 비교하였다. 향후 도시 수목과 녹지 데이터를 축적해 기초자료가 쌓이면 도시환경의 지표로 활용될 수 있을 것으로 기대된다.

Characteristics of Vegetation Structure and Bird Community in the Urban Park of Gwangju City (광주시 도시공원의 식생구조 및 야생조류군집 특성에 관한 연구)

  • 이규완;이두표
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.1
    • /
    • pp.94-103
    • /
    • 2002
  • To suggest basic research data for a plan raising naturalness of urban park forest, the structure of forest vegetation and bird community were analyzed in four urban parks of Gwangju city. And also, their relationships were discussed. Some of the structural characteristics in the two communities were closely related to each other. Species and individual densities of birds were relatively high in Songjong and Sangmu park showing the vigorous successional progress, but were low in Anchong park with simple vegetation. The bird group that nest and feed in canopy or dead wood held occupy the highest percent in Sajik park with well developed upper layer of forest, the bird group that nest and feed in shrub did in Sangmu park with developed middle layer, and the bird group that feed in ground did in Songjong park with developed low layer. Relationship between the species diversities of forest and birds was not significant. Nevertheless, bird diversity was relatively high in Sajik and Sangmu park with the high proportion of broad-leaved trees in upper and middle layers.

A Comparison between Wet-only and Bulk Deposition at Two Forest Sites in Japan

  • Imamura, Naohiro;Iwai, Noriko;Tanaka, Nobuaki;Ohte, Nobuhito
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2018
  • To investigate the effects of forest and the surrounding natural and anthropogenic sources on the bulk depositions on forested land, this study examined differences in ion concentrations between wet-only and bulk samples at two forested sites in Japan. The surrounding natural and anthropogenic sources at each site were different; Shirasaka is in a rural area and Tanashi is an urban environment. The volume weighted (vw) mean concentrations of $K^+$ and $Ca^{2+}$ in the bulk samples were significantly (p<0.05) higher than those in the wet-only samples at both sites. The forest canopy and a nearby incineration plant were hypothesized to be the main sources of $K^+$ contaminants at Shirasaka and Tanashi, respectively. The transport of sea salt and urban dust may explain the presence of enriched $Ca^{2+}$ concentrations in the bulk samples at Shirasaka and Tanashi, respectively. The $NH_4{^+}$ concentrations in the Shirasaka bulk samples were significantly (p<0.05) lower than those in the wet-only samples. The vw mean $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations in both sample types were not significantly different at either site. This study demonstrated that the ion concentration differences between wet-only and bulk samples were affected by nearby natural and anthropogenic sources even at forest sites, similar to previous findings for non-forested locations. However, the $K^+$ concentration differences between wet-only and bulk samples may be higher owing to forest sources, even in the absence of anthropogenic sources.

Effects of Urban Greenspace on Improving Atmospheric Environment - Focusing on Jung-gu in Seoul - (도시녹지의 대기환경개선 효과 - 서울시 중구를 중심으로 -)

  • 조현길;조용현;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.83-90
    • /
    • 2003
  • This study explored effects of urban greenspace on improving atmospheric environment, which is concerned with $CO_2$, SO$_2$ and NO$_2$ uptake, and with reduction of summer air temperatures. The site of this study was focused on Jung-gu in Seoul. Tree density and cover were 1.1 trees/100 $m^2$ and 12.5% respectively for the study area except forest lands. Atmospheric purification by greenspace was associated with changes in tree cover per unit area of each land use type. The mean $CO_2$ storage by woody plants was 19.4t/ha, and annual uptake averaged 2.2t/ha/yr for $CO_2$, 1.9kg/ha/yr for SO$_2$ and 5.0kg/ha/yr for NO$_2$. Entire tree plantings in the study area played a significant role by annually offsetting $CO_2$ emissions of about 1,830t from fossil fuel consumption by 330 persons, SO$_2$ emissions of 1,620kg by 1,080 persons, and NO$_2$ emissions of 4,230kg by 450 persons. The summer air temperature was 3.6$^{\circ}C$ cooler at a location with 54% cover of woody plants and 4.5$^{\circ}C$ cooler at a forest site with 100% cover, compared to a place with no planting. A 10% increase of woody plant cover was estimated to decrease summer air temperature by approximately 0.6$^{\circ}C$ until a certain level of canopy cover. Analyzing data from the Automatic Weather Stations in Seoul revealed that increasing tree cover decreased mean air temperature for the summer season (Jun~Aug) in a nonlinear function. Woody plant cover was the best predictive variable of summer temperature reduction. The results from this study are expected to be useful in emphasizing the environmental benefits and importance of urban greenspace enlargement, and in urging the necessity for planting and management budgets.

A Study on Vegetation Structure of Cultural Landscape Forest of Dongbaek Island, Busan (부산광역시 동백섬 문화경관림 식생구조 특성 연구)

  • Kim, Kyungwon;Lee, Kyong-Jae;Choi, Jin Woo;Yeum, Jung Hun;Ahn, In Su
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • The purpose of this study is to suggest vegetation management method as the cultural landscape forest of Dongbaek Island which is the district monument. The study area was $20,000m^2$ around the peak area in management as the nature sabbatical area. Vegetation structure type was classified with the criteria of topography, vegetation, management and the management plan was derived from the vegetation structure analysis according to the types. Vegetation structure types were Management-Camellia japonica, Non-management-Eurya japonica, Non-management-Rugged area-Eurya japonica. As the result of vegetation structure, Pinus thunbergii dominated in canopy layer and Camellia japonica and Eurya japonica dominated in Type I and in Type II and III, respectively. Especially, Machilus thunbergii as the climax species in the warm temperate forest were distributed centering shrubs, and as the result of distribution of diameter of breast height, middle size of Celtis sinensis and Machilus thunbergii were distributed in type I, II. Machilus thunbergii were distributed in range of 4 to 44 individuals through the all types. Mean age of canopy layer was 66 year-old and sub-canopy layer was 22.9 year-old. Shanon's species diversity was analysed from 0.5472 to 0.8646. As the vegetation management direction of Dongbaek island, managed Camellia japonica forest was suggested to maintain the regular management and non-managed Eurya japonica forest was required to remove the Eurya japonica and plant the Camellia japonica. In case of non managed Eurya japonica forest in rugged area, vegetation succession was required to laurel forest.

Planting Method of Buffer Green Space in the Reclaimed Seaside Areas, Rokko Island, Kobe, Japan (일본 고베시(신호시(神戶市)) 로코(육갑(六甲))아일랜드 임해매립지의 완충녹지 식재기법 연구)

  • Han, Bong-Ho;Kim, Jong-Yup;Choi, Jin-Woo;Cho, Yong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2010
  • This study was carried out to suggest the basic data of planting method for construction of buffer green space based on the land use in case of reclaimed land by analyzing land structure, planting concept, and planting structure in buffer green space, Rokko Island, Kobe, Japan. Rokko Island(total area: 580ha) is divided into port and logistics industry area and urban area by constructing the box type large-scale buffer green space. The land structure of buffer green space were biased mounding type, parallel mounding type, and complex mounding type. The width of buffer green space was 50meters in case of northern area, from 28 to 32meters in case of eastern area, and 37.5meters in case of western area, and the slope of that was from 18 to 25 degrees and the height of that was from 2 to 15meters. There were applied landscape and buffer planting concept on the sea side area of northern buffer green space, on the other hand landscape and shade planting concept on the Inner city side area of that. According to the result of planting structure analysis of northern buffer green space, the main woody species were those of deciduous-evergreen species grow in warm-temperate forest zone such as Quercus glauca, Cinnamomum camphora, Machilus thunbergii, Elaeagnus maritima. The results of maximum number of species and planting density by $100mm^2$ was that 9 species 22 individuals in canopy layer, 9 species 15 individuals in understory layer, 3 species 67 individuals in shrub layer, and 14 species 104 individuals in total. The plant coverage of northern buffer green space based on the ecological planting method was from 69 to 139% in case of canopy layer, from 26 to 38% in case of understory layer, from 6 to 7% in case of shrub layer, and from 101 to 184% in total. Index of plant crown volume of northern buffer green space based on the ecological planting method was from 1.40 to $3.12m^3/m^2$ in case of canopy layer, from 0.43 to $0.55m^3/m^2$ in case of understory layer, $0.06m^3/m^2$ in case of shrub layer, and from 1.89 to $3.73m^3/m^2$ in total.

A Study of Factors Influencing of Temperature according to the Land Cover and Planting Structure in the City Park - A Case Study of Central Park in Bundang-gu, Seongnam - (도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구 - 성남시 분당구 중앙공원을 사례로 -)

  • Ki, Kyong-Seok;Han, Bong-Ho;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.801-811
    • /
    • 2012
  • The purpose of this study is to find out how land cover and planting of an urban park influence temperature. Field research on the land cover and planting status was conducted for Bundang Central Park in Sungnam-si. 30 study plots in the site were selected to closely analyze land cover type and planting structure. The temperature was measured 10 times for each plot. Land coverage type, planting type, planting layer structure and green space area (the ratio of green coverage, GVZ) were chosen as factors impacting temperature and statistics were analyzed for the actual temperature measured. Analysis on how the land coverage type influences temperature showed that planting site had a low temperature and that grassland and paved land had a high temperature. When it comes to planting type, the temperature at the land planted with conifers and broad-leaved trees was low, while the temperature at grassland and paved land was high. With regard to planting layer structure, canopy and canopy-underplanting type showed low temperature, while grassland and paved land showed high temperature. An analysis on the relation between green space area and temperature found out that both ratio of green coverage and GVZ had a high level of negative correlation with the temperature measured. According to regression model of green space area and the temperature measured, for every 1% increase in the ratio of green coverage, temperature is expected to lower by $0.002^{\circ}C$. Also, for every $1m^3/m^2$ increase in GVZ, temperature is expected to go down by $0.122^{\circ}C$.

Land Use and Greenspace Structure in Seoul - Case of Kangnam-gu and Junglang-gu - (서울시의 토지이용 및 녹지구조 - 강남구 및 중랑구를 대상으로 -)

  • 조현길;이경재;권전오
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.30-41
    • /
    • 1998
  • This study analyzed urban greenspace area and vegetation structure by land use types for Kangnam-gu and Junglang-gu in Seoul different in income and building construction date. The study districts had a similar areal distribution of land use types. Residential lands accounted for about 32~37% of total area, natural lands, 19~22%, commercial and industrial lands(including transportation), 13~18%, and institutional lands, 13~17%. Greenspace covered only 20~30% of urban residential and commercial area in which human activities of living concentrate. Canopy stocking level in urban lands (all land uses except natural and agrecultural lands) was about 39% for Kangnam-gu and 50% for Junglang-gu, showing tree planting potential slightly higher in Kangnam-gu than in Junglang-gu. Woody plant cover was approximately 13%, and tree density was 3 trees/100m$^{2}$ forurban lands in both districts. The tree-age structure was largely characterized by young, growing tree population, and species diversity within a diameter class decreases as the diameter classes get larger. Urban lands of both districts had quite a similar species composition of woody plants (similarity indez of 0.70). Income and bulding construction date did not result in significant diference between the two districts in vegetation structure for urban lands. Some strategies were ezplored to solve problems found in the present greenspace structures. They included increase of biomass and greenspace area through minimization of unnecessary impervious surfaces, creation of multilayered and multiaged vegetation structures, and avoidance of intensive tree pruning and relocation of above ground utility lines.

  • PDF